ColossalAI/model_zoo/moe/gpt.py

230 lines
9.2 KiB
Python

from typing import Callable, List
from torch import dtype, nn
from colossalai import nn as col_nn
from colossalai.registry import LAYERS, MODELS
from colossalai.nn.layer import MoeModule
from colossalai.context import MOE_CONTEXT
from colossalai.logging import get_dist_logger
from colossalai.nn.layer.utils import CheckpointModule, divide
from model_zoo.gpt.gpt import GPTEmbedding, GPTSelfAttention, GPTMLP, GPTBlock, GPTLMHead
@LAYERS.register_module
class MOEGPTBlock(CheckpointModule):
def __init__(self,
num_experts: int,
dim: int,
num_heads: int,
mlp_ratio: float,
activation: Callable,
capacity_factor_train: float = 1.0,
capacity_factor_eval: float = 1.0,
use_residual: bool = False,
attention_dropout: float = 0.,
dropout: float = 0.,
layernorm_epsilon: float = 1e-5,
dtype: dtype = None,
bias: bool = True,
apply_post_layernorm: bool = False,
fuse_scale_mask_softmax: bool = False,
checkpoint: bool = False):
super().__init__(checkpoint)
self.apply_post_layernorm = apply_post_layernorm
self.norm1 = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
self.attn = GPTSelfAttention(dim=dim,
num_heads=num_heads,
attention_dropout=attention_dropout,
dropout=dropout,
bias=bias,
fuse_scale_mask_softmax=fuse_scale_mask_softmax,
dtype=dtype)
self.norm2 = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
mpl_factory_dict = dict(dim=dim,
mlp_ratio=mlp_ratio,
activation=activation,
dropout=dropout,
dtype=dtype,
bias=bias)
self.mlp = MoeModule(dim_model=dim,
num_experts=num_experts,
top_k=1,
capacity_factor_train=capacity_factor_train,
capacity_factor_eval=capacity_factor_eval,
noisy_policy='Jitter',
use_residual=use_residual,
expert_cls=GPTMLP,
**mpl_factory_dict)
def _forward(self, x, attention_mask=None):
if not self.apply_post_layernorm:
residual = x
x = self.norm1(x)
if self.apply_post_layernorm:
residual = x
x = residual + self.attn(x, attention_mask)
if not self.apply_post_layernorm:
residual = x
x = self.norm2(x)
if self.apply_post_layernorm:
residual = x
x = residual + self.mlp(x)
return x, attention_mask
@MODELS.register_module
class MOEGPT(nn.Module):
def __init__(self,
num_experts: int or List[int],
use_residual: bool = False,
capacity_factor_train: float = 1.0,
capacity_factor_eval: float = 1.0,
vocab_size: int = 50304,
max_position_embeddings: int = 1024,
dim: int = 768,
num_heads: int = 12,
depth: int = 12,
mlp_ratio: float = 4.0,
dropout: float = 0.1,
embedding_dropout: float = 0.1,
attention_dropout: float = 0.1,
layernorm_epsilon: float = 1e-5,
activation: Callable = nn.functional.gelu,
padding_idx: int = None,
dtype: dtype = None,
bias: bool = True,
apply_post_layernorm: bool = False,
fuse_scale_mask_softmax: bool = False,
checkpoint: bool = False) -> None:
super().__init__()
half_depth = divide(depth, 2)
if isinstance(num_experts, list):
assert len(num_experts) == half_depth, \
"The length of num_experts should equal to the number of MOE layers"
num_experts_list = num_experts
else:
num_experts_list = [num_experts] * half_depth
self.embed = GPTEmbedding(embedding_dim=dim,
vocab_size=vocab_size,
max_position_embeddings=max_position_embeddings,
padding_idx=padding_idx,
dropout=embedding_dropout,
dtype=dtype)
block_list = []
block_factory_dict = dict(dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
activation=activation,
attention_dropout=attention_dropout,
dropout=dropout,
layernorm_epsilon=layernorm_epsilon,
dtype=dtype,
bias=bias,
apply_post_layernorm=apply_post_layernorm,
fuse_scale_mask_softmax=fuse_scale_mask_softmax,
checkpoint=checkpoint)
for i in range(depth):
if i % 2 == 0:
block_module = GPTBlock(**block_factory_dict)
else:
num_experts = num_experts_list[i // 2]
block_module = MOEGPTBlock(num_experts=num_experts,
capacity_factor_train=capacity_factor_train,
capacity_factor_eval=capacity_factor_eval,
use_residual=use_residual,
**block_factory_dict)
block_list.append(block_module)
self.blocks = nn.ModuleList(block_list)
self.norm = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
self.head = GPTLMHead(dim=dim,
vocab_size=vocab_size,
word_embeeding_weight=self.embed.word_embedding_weight,
dtype=dtype)
def forward(self, input_ids, attention_mask=None):
MOE_CONTEXT.reset_loss()
x = self.embed(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# Adapted from huggingface
if attention_mask is not None:
batch_size = input_ids.shape[0]
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = col_nn.partition_batch(attention_mask)
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = attention_mask.to(dtype=x.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -10000.0
for block in self.blocks:
x, attention_mask = block(x, attention_mask)
x = self.head(self.norm(x))
return x
def _create_moegpt_model(**model_kwargs):
model = MOEGPT(**model_kwargs)
return model
def _prmoe_check_sanity(kwargs_dict):
logger = get_dist_logger()
if not kwargs_dict.pop('use_residual', False):
logger.warning(
"If you want to use PR-MOE, please set 'use_residual' to True. "
"Otherwise, we'll force 'use_residual' to True.",
ranks=[0])
@MODELS.register_module
def prmoe_4b(**kwargs):
_prmoe_check_sanity(kwargs)
model_kwargs = dict(num_experts=[32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64],
use_residual=True,
dim=1024,
depth=24,
num_heads=16,
**kwargs)
return _create_moegpt_model(**model_kwargs)
@MODELS.register_module
def prmoe_31b(**kwargs):
_prmoe_check_sanity(kwargs)
model_kwargs = dict(num_experts=[64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128],
use_residual=True,
dim=2048,
depth=24,
num_heads=16,
**kwargs)
return _create_moegpt_model(**model_kwargs)
@MODELS.register_module
def prmoe_51b(**kwargs):
_prmoe_check_sanity(kwargs)
model_kwargs = dict(num_experts=[32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64],
use_residual=True,
dim=3072,
depth=32,
num_heads=24,
**kwargs)
return _create_moegpt_model(**model_kwargs)