ColossalAI/colossalai/tensor/_ops/layernorm.py

40 lines
1.2 KiB
Python

import torch
from colossalai.tensor.op_wrapper import colo_op_impl
from colossalai.tensor import ColoTensor, dist_spec
@colo_op_impl(torch.nn.functional.layer_norm)
def colo_layernorm(types, args=(), kwargs=None, pg=None):
arg_num = len(args)
if arg_num > 0:
input_tensor = args[0]
if arg_num > 1:
normalized_shape = args[1]
if arg_num > 2:
weight = args[3]
if arg_num > 3:
bias = args[4]
if arg_num > 4:
eps = args[5]
if 'input' in kwargs:
input_tensor = kwargs['input']
if 'weight' in kwargs:
weight = kwargs['weight']
if 'bias' in kwargs:
bias = kwargs['bias']
if 'eps' in kwargs:
eps = kwargs['eps']
if isinstance(input_tensor, ColoTensor):
# TODO (ver217): check input dist spec
input_tensor.to_dist_spec(dist_spec.replicate(input_tensor.spec.get_process_group()))
input_tensor = input_tensor.torch_tensor()
if isinstance(weight, ColoTensor):
weight = weight.torch_tensor()
if isinstance(bias, ColoTensor):
bias = bias.torch_tensor()
return ColoTensor.init_from_torch_tensor(
torch.nn.functional.layer_norm(input_tensor, normalized_shape, weight, bias, eps))