ColossalAI/tests/kit/model_zoo/transformers/t5.py

76 lines
3.0 KiB
Python

import torch
import transformers
from ..registry import ModelAttribute, model_zoo
# ===============================
# Register single-sentence T5
# ===============================
# define data gen function
def data_gen_for_encoder_only():
# Generated from following code snippet
#
# from transformers import T5Config, T5Tokenizer
# config = T5Config(decoder_start_token_id=0)
# tokenizer = T5Tokenizer.from_pretrained("t5-small")
# input_ids = tokenizer("translate English to German: The house is wonderful.", return_tensors="pt").input_ids
input_ids = torch.Tensor([[13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5, 1]]).long()
return dict(input_ids=input_ids)
def data_gen_for_conditional_generation():
# labels is generated with the following code
#
# labels = tokenizer("Das Haus ist wunderbar.", return_tensors="pt").input_ids
data = data_gen_for_encoder_only()
labels = torch.Tensor([[644, 4598, 229, 19250, 5, 1]]).long()
data['labels'] = labels
return data
def data_gen_for_t5_model():
# decoder_inputs_ids is obtained with the following code
#
# decoder_input_ids = model._shift_right(input_ids)
data = data_gen_for_encoder_only()
decoder_input_ids = torch.Tensor([[0, 13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5]]).long()
data['decoder_input_ids'] = decoder_input_ids
return data
# output transform function
output_transform_fn = lambda x: x
# define loss funciton
loss_fn_for_t5_model = lambda x: x.last_hidden_state.mean()
loss_fn_for_encoder_only = lambda x: x.last_hidden_state.mean()
loss_fn_for_conditional_generation = lambda x: x.loss
# define model config
config = transformers.T5Config(d_model=128, num_layers=2, dropout_rate=0, decoder_start_token_id=0)
# register the following models
# transformers.T5Model,
# transformers.T5ForConditionalGeneration,
# transformers.T5EncoderModel,
model_zoo.register(name='transformers_t5',
model_fn=lambda: transformers.T5Model(config),
data_gen_fn=data_gen_for_t5_model,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_t5_model,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_t5_for_conditional_generation',
model_fn=lambda: transformers.T5ForConditionalGeneration(config),
data_gen_fn=data_gen_for_conditional_generation,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_conditional_generation,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_t5_encoder_model',
model_fn=lambda: transformers.T5EncoderModel(config),
data_gen_fn=data_gen_for_encoder_only,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_encoder_only,
model_attribute=ModelAttribute(has_control_flow=True))