mirror of https://github.com/hpcaitech/ColossalAI
528 lines
22 KiB
Python
528 lines
22 KiB
Python
import operator
|
|
from enum import Enum
|
|
from functools import reduce
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.distributed import ReduceOp
|
|
|
|
__all__ = [
|
|
'CollectiveCommPattern',
|
|
'CommSpec',
|
|
]
|
|
|
|
|
|
def _all_gather(tensor, comm_spec):
|
|
'''
|
|
Implement all gather operation on device mesh based on information provided by comm_spec.
|
|
'''
|
|
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
|
|
for rank_list, process_group in process_groups_list:
|
|
if dist.get_rank() in rank_list:
|
|
tensor_list = [
|
|
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device)
|
|
for _ in range(comm_spec.device_mesh.mesh_shape[comm_spec.logical_process_axis])
|
|
]
|
|
# without this contiguous operation, the all gather may get some unexpected results.
|
|
tensor = tensor.contiguous()
|
|
dist.all_gather(tensor_list, tensor, group=process_group)
|
|
output = torch.cat(tuple(tensor_list), comm_spec.gather_dim).contiguous()
|
|
return output
|
|
|
|
|
|
def _split(tensor, comm_spec):
|
|
'''
|
|
Implement shard operation on device mesh based on information provided by comm_spec.
|
|
'''
|
|
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
|
|
for rank_list, _ in process_groups_list:
|
|
if dist.get_rank() in rank_list:
|
|
dim = comm_spec.shard_dim
|
|
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
|
|
start = length * rank_list.index(dist.get_rank())
|
|
output = torch.narrow(tensor, dim, start, length).contiguous()
|
|
return output
|
|
|
|
|
|
def _all_to_all(tensor, comm_spec):
|
|
'''
|
|
Implement all to all operation on device mesh based on information provided by comm_spec.
|
|
'''
|
|
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
|
|
for rank_list, process_group in process_groups_list:
|
|
if dist.get_rank() in rank_list:
|
|
new_shape = list(tensor.shape)
|
|
new_shape[comm_spec.shard_dim] = new_shape[comm_spec.shard_dim] // len(rank_list)
|
|
new_shape = torch.Size(new_shape)
|
|
output_tensor_list = [
|
|
torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(len(rank_list))
|
|
]
|
|
dim = comm_spec.shard_dim
|
|
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
|
|
input_tensor_list = [
|
|
torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(len(rank_list))
|
|
]
|
|
group = process_group
|
|
dist.all_to_all(output_tensor_list, input_tensor_list, group)
|
|
output = torch.cat(tuple(output_tensor_list), comm_spec.gather_dim).contiguous()
|
|
return output
|
|
|
|
|
|
def _all_reduce(tensor, comm_spec, async_op=False):
|
|
'''
|
|
Implement all reduce operation on device mesh based on information provided by comm_spec.
|
|
'''
|
|
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
|
|
for rank_list, process_group in process_groups_list:
|
|
if dist.get_rank() in rank_list:
|
|
if not tensor.is_contiguous():
|
|
tensor = tensor.contiguous()
|
|
dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group, async_op=async_op)
|
|
return tensor
|
|
|
|
|
|
def _mix_gather(tensor, comm_spec):
|
|
'''
|
|
Implement mix gather operation on device mesh based on information provided by comm_spec.
|
|
Mix gather is the all-gather operation on all devices in the device_mesh(FlattenDeviceMesh) of the comm_spec. It is
|
|
different from _all_gather because _mix_gather does all-gather in two dimensions of device mesh, while _all_gather
|
|
only does all-gather in one dimension.
|
|
Assume index of f and b target pairs are 'f' and 'b'
|
|
ShardingSpec => gather_dim, logical_process_axes
|
|
S0S1 => [b, f], (1, 0)
|
|
S1S0 => [b, f], (0, 1)
|
|
S01R => [f], (1, 1)
|
|
RS01 => [b], (1, 1)
|
|
Example:
|
|
mesh_shape = (2,4)
|
|
# [[0, 1, 2, 3],
|
|
# [4, 5, 6, 7]]
|
|
# return {0: [0, 4, 1, 5, 2, 6, 3, 7], 1: [0, 1, 2, 3, 4, 5, 6, 7]}
|
|
S0S1:
|
|
leading_group_dim = 1
|
|
process_group = "[0, 1, 2, 3, 4, 5, 6, 7]"
|
|
tensor_list = [(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)] # [(slice_id_f, slice_id_b),...]
|
|
mesh_shape = (2,4)
|
|
cat_slice = [4,2]
|
|
tmp_tensor_list = [(...,shape[f],shape[b]*4,...),(...,shape[f],shape[b]*4,...)]
|
|
tmp_tensor_list[0] = torch.cat(((0,0),(0,1),(0,2),(0,3)), dim=b)
|
|
tmp_tensor_list[1] = torch.cat(((1,0),(1,1),(1,2),(1,3)), dim=b)
|
|
output = torch.cat((tmp_tensor_list[0],tmp_tensor_list[1]), dim=a)
|
|
S1S0:
|
|
leading_group_dim = 0
|
|
process_group = "[0, 4, 1, 5, 2, 6, 3, 7]"
|
|
tensor_list = [(0,0),(0,1),(1,0),(1,1),(2,0),(2,1),(3,0),(3,1)]
|
|
mesh_shape = (2,4)
|
|
cat_slice = [2,4]
|
|
tmp_tensor_list = [(...,shape[f],shape[b]*2,...),(...,shape[f],shape[b]*2,...),(...,shape[f],shape[b]*2,...),(...,shape[f],shape[b]*2,...)]
|
|
tmp_tensor_list[0] = torch.cat(((0,0),(0,1)), dim=b)
|
|
tmp_tensor_list[1] = torch.cat(((1,0),(1,1)), dim=b)
|
|
tmp_tensor_list[2] = torch.cat(((2,0),(2,1)), dim=b)
|
|
tmp_tensor_list[3] = torch.cat(((3,0),(3,1)), dim=b)
|
|
S10R:
|
|
leading_group_dim = 0
|
|
process_group = "[0, 4, 1, 5, 2, 6, 3, 7]"
|
|
tensor_list = [(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(7,0)]
|
|
S01R:
|
|
leading_group_dim = 1
|
|
process_group = "[0, 1, 2, 3, 4, 5, 6, 7]"
|
|
tensor_list = [(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(6,0),(7,0)]
|
|
'''
|
|
total_slices = comm_spec.device_mesh.mesh_shape[0]
|
|
tensor_list = [torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device) for _ in range(total_slices)]
|
|
leading_group_dim = comm_spec.logical_process_axes[0]
|
|
assert len(comm_spec.device_mesh.process_groups_dict) == 1
|
|
_, process_group = comm_spec.device_mesh.process_groups_dict[0][0]
|
|
process_number_list = comm_spec.device_meshes.process_number_dict[leading_group_dim]
|
|
|
|
# Global all_gather
|
|
dist.all_gather(tensor_list, tensor, group=process_group)
|
|
|
|
# This is very ugly. I'm figuring out more elegant methods
|
|
tensor_list_sorted = [
|
|
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device) for _ in range(total_slices)
|
|
]
|
|
for i in range(total_slices):
|
|
tensor_list_sorted[i] = tensor_list[process_number_list[i]]
|
|
tensor_list = tensor_list_sorted
|
|
|
|
if comm_spec.logical_process_axes[0] == comm_spec.logical_process_axes[1]:
|
|
output = torch.cat(tuple(tensor_list), comm_spec.gather_dim[0]).contiguous()
|
|
else:
|
|
mesh_shape = comm_spec.device_meshes.mesh_shape
|
|
cat_slice = [mesh_shape[comm_spec.logical_process_axes[0]], mesh_shape[comm_spec.logical_process_axes[1]]]
|
|
tmp_tensor_shape = list(tensor.shape)
|
|
tmp_tensor_shape[comm_spec.gather_dim[0]] *= cat_slice[0]
|
|
tmp_tensor_shape = torch.Size(tmp_tensor_shape)
|
|
tmp_tensor_list = [
|
|
torch.zeros(tmp_tensor_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(cat_slice[1])
|
|
]
|
|
for i in range(cat_slice[1]):
|
|
tmp_tensor_list[i] = torch.cat(tuple(tensor_list[i * cat_slice[0]:(i + 1) * cat_slice[0]]),
|
|
comm_spec.gather_dim[0]).contiguous()
|
|
output = torch.cat(tuple(tmp_tensor_list), comm_spec.gather_dim[1]).contiguous()
|
|
|
|
return output
|
|
|
|
|
|
def _mix_split(tensor, comm_spec):
|
|
'''
|
|
Implement mix split operation. Mix split is only called for the backward of mix gather (Use ctx to keep consistent)
|
|
Mix split shards the tensor on device mesh based on information provided by comm_spec. It is different from split
|
|
because _mix_split shards the tensor in two dimensions of device mesh, while _split only shards in one dimension.
|
|
Assume index of f and b target pairs are 'f' and 'b'
|
|
S0S1 => [b, f], (1, 0)
|
|
S1S0 => [b, f], (0, 1)
|
|
S01R => [f], (0, 0)
|
|
RS01 => [b], (0, 0)
|
|
Example:
|
|
mesh_shape = (2,4)
|
|
# [[0, 1, 2, 3],
|
|
# [4, 5, 6, 7]]
|
|
# return {0: [0, 4, 1, 5, 2, 6, 3, 7], 1: [0, 1, 2, 3, 4, 5, 6, 7]}
|
|
'''
|
|
mesh_shape = comm_spec.device_meshes.mesh_shape
|
|
dim = comm_spec.gather_dim
|
|
total_slices = comm_spec.device_mesh.mesh_shape[0]
|
|
|
|
# Get global rank
|
|
rank = dist.get_rank()
|
|
|
|
leading_group_dim = comm_spec.logical_process_axes[0]
|
|
process_number_list = comm_spec.device_meshes.process_number_dict[leading_group_dim]
|
|
rank = process_number_list.index(rank)
|
|
|
|
if comm_spec.logical_process_axes[0] == comm_spec.logical_process_axes[1]:
|
|
length = tensor.shape[dim[0]] // total_slices
|
|
start = length * rank
|
|
output = torch.narrow(tensor, dim[0], start, length).contiguous()
|
|
else:
|
|
tensor_shape = [tensor.shape[dim[0]], tensor.shape[dim[1]]]
|
|
rank_slice = [mesh_shape[comm_spec.logical_process_axes[0]], mesh_shape[comm_spec.logical_process_axes[1]]]
|
|
length = [tensor_shape[0] // rank_slice[0], tensor_shape[1] // rank_slice[1]]
|
|
start = [(rank % rank_slice[0]) * length[0], (rank // rank_slice[0]) * length[1]]
|
|
tmp_output = torch.narrow(tensor, dim[0], start[0], length[0]).contiguous()
|
|
output = torch.narrow(tmp_output, dim[1], start[1], length[1]).contiguous()
|
|
|
|
return output
|
|
|
|
|
|
class _ReduceGrad(torch.autograd.Function):
|
|
"""
|
|
A customized communication operation which forward is an identity operation,
|
|
backward is all_reduce operation.
|
|
|
|
Args:
|
|
input_: input matrix.
|
|
comm_spec: comm_spec will give information like process group, rank list, etc.
|
|
"""
|
|
|
|
@staticmethod
|
|
def symbolic(graph, input_):
|
|
return input_
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, comm_spec):
|
|
ctx.comm_spec = comm_spec
|
|
return input_
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
return _all_reduce(grad_output, ctx.comm_spec), None
|
|
|
|
|
|
class _ReduceInput(torch.autograd.Function):
|
|
"""
|
|
A customized communication operation which forward is all_reduce operation,
|
|
backward is an identity operation.
|
|
|
|
Args:
|
|
input_: input matrix.
|
|
comm_spec: comm_spec will give information like process group, rank list, etc.
|
|
"""
|
|
|
|
@staticmethod
|
|
def symbolic(graph, input_):
|
|
return _all_reduce(input_)
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, comm_spec):
|
|
return _all_reduce(input_, comm_spec)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
return grad_output, None
|
|
|
|
|
|
class _SplitForwardGatherBackward(torch.autograd.Function):
|
|
"""
|
|
A customized communication operation which forward is split operation,
|
|
backward is an all gather operation.
|
|
|
|
Args:
|
|
input_: input matrix.
|
|
comm_spec: comm_spec will give information like process group, rank list, etc.
|
|
"""
|
|
|
|
@staticmethod
|
|
def symbolic(graph, input_):
|
|
return _split(input_)
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, comm_spec):
|
|
ctx.comm_spec = comm_spec
|
|
return _split(input_, comm_spec)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
return _all_gather(grad_output, ctx.comm_spec), None
|
|
|
|
|
|
class _GatherForwardSplitBackward(torch.autograd.Function):
|
|
"""
|
|
A customized communication operation which forward is an all gather operation,
|
|
backward is split operation.
|
|
|
|
Args:
|
|
input_: input matrix.
|
|
comm_spec: comm_spec will give information like process group, rank list, etc.
|
|
"""
|
|
|
|
@staticmethod
|
|
def symbolic(graph, input_):
|
|
return _all_gather(input_)
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, comm_spec):
|
|
ctx.comm_spec = comm_spec
|
|
return _all_gather(input_, comm_spec)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
return _split(grad_output, ctx.comm_spec), None
|
|
|
|
|
|
class _AllToAll(torch.autograd.Function):
|
|
"""
|
|
A customized communication operation which forward is an all to all operation,
|
|
backward is an all to all operation.
|
|
|
|
Args:
|
|
input_: input matrix.
|
|
comm_spec: comm_spec will give information like process group, rank list, etc.
|
|
"""
|
|
|
|
@staticmethod
|
|
def symbolic(graph, input_):
|
|
return _all_to_all(input_)
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, comm_spec):
|
|
output = _all_to_all(input_, comm_spec)
|
|
comm_spec_for_backward = CommSpec(comm_pattern=comm_spec.comm_pattern,
|
|
sharding_spec=comm_spec.sharding_spec,
|
|
gather_dim=comm_spec.shard_dim,
|
|
shard_dim=comm_spec.gather_dim,
|
|
logical_process_axis=comm_spec.logical_process_axis)
|
|
ctx.comm_spec = comm_spec_for_backward
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_outputs):
|
|
return _all_to_all(grad_outputs, ctx.comm_spec), None
|
|
|
|
|
|
class _MixGatherForwardMixSplitBackward(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def symbolic(graph, input_):
|
|
return _mix_gather(input_)
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, comm_spec):
|
|
ctx.comm_spec = comm_spec
|
|
return _mix_gather(input_, comm_spec)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
return _mix_split(grad_output, ctx.comm_spec), None
|
|
|
|
|
|
def reduce_grad(input_, comm_spec):
|
|
return _ReduceGrad.apply(input_, comm_spec)
|
|
|
|
|
|
def reduce_input(input_, comm_spec):
|
|
return _ReduceInput.apply(input_, comm_spec)
|
|
|
|
|
|
def split_forward_gather_backward(input_, comm_spec):
|
|
return _SplitForwardGatherBackward.apply(input_, comm_spec)
|
|
|
|
|
|
def gather_forward_split_backward(input_, comm_spec):
|
|
return _GatherForwardSplitBackward.apply(input_, comm_spec)
|
|
|
|
|
|
def all_to_all(input_, comm_spec):
|
|
return _AllToAll.apply(input_, comm_spec)
|
|
|
|
|
|
def mixgather_forward_split_backward(input_, comm_spec):
|
|
return _MixGatherForwardMixSplitBackward.apply(input_, comm_spec)
|
|
|
|
|
|
class CollectiveCommPattern(Enum):
|
|
GATHER_FWD_SPLIT_BWD = 'gather_fwd_split_bwd'
|
|
ALL2ALL_FWD_ALL2ALL_BWD = 'all2all_fwd_all2all_bwd'
|
|
SPLIT_FWD_GATHER_BWD = 'split_fwd_gather_bwd'
|
|
ALLREDUCE_FWD_IDENTITY_BWD = 'all_reduce_fwd_identity_bwd'
|
|
IDENTITY_FWD_ALLREDUCE_BWD = 'identity_fwd_all_reduce_bwd'
|
|
MIXGATHER_FWD_SPLIT_BWD = "mixgather_fwd_split_bwd"
|
|
|
|
|
|
class CommSpec:
|
|
'''
|
|
Communication spec is used to record the communication action. It has two main functions:
|
|
1. Compute the communication cost which will be used in auto parallel solver.
|
|
2. Convert the communication spec to real action which will be used in runtime.
|
|
It contains comm_pattern to determine the
|
|
communication method, sharding_spec to determine the communication size, gather_dim and shard_dim
|
|
to determine the buffer shape, and logical_process_axis
|
|
|
|
Argument:
|
|
comm_pattern(CollectiveCommPattern): describe the communication method used in this spec.
|
|
sharding_spec(ShardingSpec): This is sharding spec of the tensor which will join the communication action.
|
|
gather_dim(int, Optional): The gather_dim of the tensor will be gathered.
|
|
shard_dim(int, Optional): The shard_dim of the tensor will be sharded.
|
|
logical_process_axis(Union(int, List[int]), Optional): The mesh_dim to implement the communication action.
|
|
'''
|
|
|
|
def __init__(self,
|
|
comm_pattern,
|
|
sharding_spec,
|
|
gather_dim=None,
|
|
shard_dim=None,
|
|
logical_process_axis=None,
|
|
forward_only=False,
|
|
mix_gather=False):
|
|
self.comm_pattern = comm_pattern
|
|
self.sharding_spec = sharding_spec
|
|
self.gather_dim = gather_dim
|
|
self.shard_dim = shard_dim
|
|
self.logical_process_axis = logical_process_axis
|
|
self.forward_only = forward_only
|
|
if isinstance(self.logical_process_axis, list):
|
|
if not mix_gather:
|
|
self.device_mesh = self.sharding_spec.device_mesh.flatten_device_mesh
|
|
self.logical_process_axis = 0
|
|
else:
|
|
self.device_meshes = self.sharding_spec.device_mesh.flatten_device_meshes
|
|
self.device_mesh = self.sharding_spec.device_mesh.flatten_device_mesh
|
|
# Create a new member `logical_process_axes` to distinguish from original flatten
|
|
self.logical_process_axes = logical_process_axis
|
|
else:
|
|
self.device_mesh = self.sharding_spec.device_mesh
|
|
|
|
def __repr__(self):
|
|
res_list = ["CommSpec:("]
|
|
if self.comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD:
|
|
res_list.append(f"comm_pattern:GATHER_FWD_SPLIT_BWD, ")
|
|
res_list.append(f"gather_dim:{self.gather_dim}, ")
|
|
res_list.append(f"shard_dim:{self.shard_dim}, ")
|
|
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
|
|
elif self.comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD:
|
|
res_list.append(f"comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, ")
|
|
res_list.append(f"gather_dim:{self.gather_dim}, ")
|
|
res_list.append(f"shard_dim:{self.shard_dim}, ")
|
|
res_list.append(f"logical_process_axis: {self.logical_process_axis})")
|
|
elif self.comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD:
|
|
res_list.append(f"comm_pattern:SPLIT_FWD_GATHER_BWD, ")
|
|
res_list.append(f"gather_dim:{self.gather_dim}, ")
|
|
res_list.append(f"shard_dim:{self.shard_dim}, ")
|
|
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
|
|
elif self.comm_pattern == CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD:
|
|
res_list.append(f"comm_pattern:ALLREDUCE_FWD_IDENTITY_BWD, ")
|
|
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
|
|
elif self.comm_pattern == CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD:
|
|
res_list.append(f"comm_pattern:IDENTITY_FWD_ALLREDUCE_BWD, ")
|
|
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
|
|
elif self.comm_pattern == CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD:
|
|
res_list.append(f"comm_pattern:MIXGATHER_FWD_SPLIT_BWD, ")
|
|
res_list.append(f"gather_dim:{self.gather_dim}, ")
|
|
res_list.append(f"logical_process_asex:{self.logical_process_axes})")
|
|
|
|
return ''.join(res_list)
|
|
|
|
def get_comm_cost(self):
|
|
'''
|
|
For all_gather, all2all, and all_reduce operation, the formula provided in DeviceMesh with alpha-beta model is used to
|
|
compute the communication cost.
|
|
For shard operation, it is an on-chip operation, so the communication cost is zero.
|
|
'''
|
|
comm_size = reduce(operator.mul, self.sharding_spec.get_sharded_shape_per_device(), 1)
|
|
cost_dict = {}
|
|
if self.comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD:
|
|
forward_communication_cost = self.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
|
|
# give a tiny cost to shard
|
|
backward_communication_cost = 100
|
|
|
|
if self.comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD:
|
|
forward_communication_cost = self.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
|
|
# grad should have same shape as input tensor
|
|
# all to all operation has same logical process axis as forward.
|
|
backward_communication_cost = self.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
|
|
|
|
if self.comm_pattern == CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD:
|
|
forward_communication_cost = self.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis)
|
|
backward_communication_cost = 0
|
|
|
|
if self.comm_pattern == CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD:
|
|
forward_communication_cost = 0
|
|
backward_communication_cost = self.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis)
|
|
|
|
if self.comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD:
|
|
# give a tiny cost to shard
|
|
forward_communication_cost = 100
|
|
backward_communication_cost = self.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
|
|
|
|
if self.comm_pattern == CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD:
|
|
# no need for axis because all devices are used in mix_gather
|
|
forward_communication_cost = self.device_mesh.mix_gather_cost(comm_size)
|
|
backward_communication_cost = 100
|
|
|
|
if self.forward_only:
|
|
cost_dict["forward"] = forward_communication_cost
|
|
cost_dict["backward"] = 0
|
|
cost_dict["total"] = cost_dict["forward"] + cost_dict["backward"]
|
|
else:
|
|
cost_dict["forward"] = forward_communication_cost
|
|
cost_dict["backward"] = backward_communication_cost
|
|
cost_dict["total"] = cost_dict["forward"] + cost_dict["backward"]
|
|
|
|
return cost_dict
|
|
|
|
def covert_spec_to_action(self, tensor):
|
|
'''
|
|
Convert CommSpec into runtime action, implement real collection communication to target tensor.
|
|
The collection communication action is directed by the CommSpec.
|
|
|
|
Argument:
|
|
tensor(torch.Tensor): Tensor stored in each device, which could be different in different ranks.
|
|
'''
|
|
if self.comm_pattern in pattern_to_func_dict:
|
|
tensor = pattern_to_func_dict[self.comm_pattern](tensor, self)
|
|
else:
|
|
tensor = tensor
|
|
return tensor
|
|
|
|
|
|
pattern_to_func_dict = {
|
|
CollectiveCommPattern.GATHER_FWD_SPLIT_BWD: gather_forward_split_backward,
|
|
CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD: all_to_all,
|
|
CollectiveCommPattern.SPLIT_FWD_GATHER_BWD: split_forward_gather_backward,
|
|
CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD: reduce_input,
|
|
CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD: reduce_grad,
|
|
CollectiveCommPattern.MIXGATHER_FWD_SPLIT_BWD: mixgather_forward_split_backward,
|
|
}
|