mirror of https://github.com/hpcaitech/ColossalAI
51 lines
1.4 KiB
Python
51 lines
1.4 KiB
Python
import os
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
|
|
import colossalai
|
|
from colossalai.context import MOE_CONTEXT
|
|
from colossalai.nn.layer.moe import load_moe_model, save_moe_model
|
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
|
from colossalai.utils import get_current_device
|
|
from colossalai.zero import ColoInitContext
|
|
from tests.test_moe.test_moe_zero_init import MoeModel
|
|
from tests.test_zero.test_legacy.common import CONFIG
|
|
|
|
|
|
def exam_moe_checkpoint():
|
|
with ColoInitContext(device=get_current_device()):
|
|
model = MoeModel(checkpoint=True)
|
|
save_moe_model(model, 'temp_path.pth')
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
other_model = MoeModel(checkpoint=True)
|
|
load_moe_model(other_model, 'temp_path.pth')
|
|
|
|
state_0 = model.state_dict()
|
|
state_1 = other_model.state_dict()
|
|
for k, v in state_0.items():
|
|
u = state_1.get(k)
|
|
assert torch.equal(u.data, v.data)
|
|
|
|
if dist.get_rank() == 0:
|
|
os.remove('temp_path.pth')
|
|
|
|
|
|
def _run_dist(rank, world_size, port):
|
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
MOE_CONTEXT.setup(seed=42)
|
|
exam_moe_checkpoint()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@pytest.mark.parametrize("world_size", [2, 4])
|
|
@rerun_if_address_is_in_use()
|
|
def test_moe_checkpoint(world_size):
|
|
spawn(_run_dist)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_moe_checkpoint(world_size=4)
|