Making large AI models cheaper, faster and more accessible
 
 
 
 
 
 
Go to file
Wang Binluo eea37da6fa
[fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016)
* add SimPO

* fix dataloader

* remove debug code

* add orpo

* fix style

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix torch colossalai version

* update transformers version

* [shardformer] DeepseekMoE support (#5871)

* [Feature] deepseek moe expert parallel implement

* [misc] fix typo, remove redundant file (#5867)

* [misc] fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] deepseek support & unit test

* [misc] remove debug code & useless print

* [misc] fix typos (#5872)

* [Feature] remove modeling file, use auto config. (#5884)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [Deepseek] remove redundant code (#5888)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [Feature/deepseek] resolve comment. (#5889)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [misc] mv module replacement into if branch

* [misc] add some warning message and modify some code in unit test

* [misc] fix typos

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)

* Diffusion Model Inference support

* Stable Diffusion 3 Support

* pixartalpha support

* [HotFix] CI,import,requirements-test for #5838 (#5892)

* [Hot Fix] CI,import,requirements-test

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] Enable PP + SP for llama (#5868)

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* use a one cross entropy func for all shardformer models

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)

* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint

* fix style

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix eval

* hotfix citation

* [zero] support all-gather overlap (#5898)

* [zero] support all-gather overlap

* [zero] add overlap all-gather flag

* [misc] fix typo

* [zero] update api

* fix orpo cross entropy loss

* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)

* Remove unnecessary calls to deepcopy

* Build DimSpec's difference dict only once

This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.

* Fix documentation of DimSpec's difference method

* [ShardFormer] fix qwen2 sp (#5903)

* [compatibility] support torch 2.2 (#5875)

* Support Pytorch 2.2.2

* keep build_on_pr file and update .compatibility

* fix object_to_tensor usage when torch>=2.3.0 (#5820)

* [misc] support torch2.3 (#5893)

* [misc] support torch2.3

* [devops] update compatibility ci

* [devops] update compatibility ci

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] remove debug

* [devops] remove debug

* [release] update version (#5912)

* [plugin] support all-gather overlap for hybrid parallel (#5919)

* [plugin] fixed all-gather overlap support for hybrid parallel

* add kto

* fix style, add kto data sample

* [Examples] Add lazy init to OPT and GPT examples (#5924)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [ColossalChat] Hotfix for ColossalChat (#5910)

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* fix ddp issue

* add Qwen 1.5 32B

* refactor tokenization

* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)

* cannot access local variable 'default_conversation' where it is not associated with a value

set default value for 'default_conversation'

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix test data

* refactor evaluation

* remove real data path

* remove real data path

* Add n_fused as an input from native_module (#5894)

* [FIX BUG] convert env param to int in (#5934)

* [Hotfix] Fix ZeRO typo #5936

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)

* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix style

* fix style

* fix style

* [shardformer] hotfix attn mask (#5945)

* [shardformer] hotfix attn mask (#5947)

* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)

* Distrifusion Support source

* comp comm overlap optimization

* sd3 benchmark

* pixart distrifusion bug fix

* sd3 bug fix and benchmark

* generation bug fix

* naming fix

* add docstring, fix counter and shape error

* add reference

* readme and requirement

* [zero] hotfix update master params (#5951)

* [release] update version (#5952)

* [Chat] Fix lora (#5946)

* fix merging

* remove filepath

* fix style

* Update README.md (#5958)

* [hotfix] Remove unused plan section (#5957)

* remove readme

* fix readme

* update

* [test] add mixtral for sequence classification

* [test] add mixtral transformer test

* [moe] fix plugin

* [test] mixtra pp shard test

* [chore] handle non member group

* [zero] solve hang

* [test] pass mixtral shardformer test

* [moe] implement transit between non moe tp and ep

* [zero] solve hang

* [misc] solve booster hang by rename the variable

* solve hang when parallel mode = pp + dp

* [moe] implement submesh initialization

* [moe] add mixtral dp grad scaling when not all experts are activated

* [chore] manually revert unintended commit

* [chore] trivial fix

* [chore] arg pass & remove drop token

* [test] add mixtral modelling test

* [moe] implement tp

* [moe] test deepseek

* [moe] clean legacy code

* [Feature] MoE Ulysses Support (#5918)

* moe sp support

* moe sp bug solve

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [chore] minor fix

* [moe] init moe plugin comm setting with sp

* moe sp + ep bug fix

* [moe] finalize test (no pp)

* [moe] full test for deepseek and mixtral (pp + sp to fix)

* [chore] minor fix after rebase

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [chore] solve moe ckpt test failure and some other arg pass failure

* [moe] remove ops

* [test] fix test: test_zero1_2

* [bug] fix: somehow logger hangs the program

* [moe] deepseek moe sp support

* [test] add check

* [deepseek] replace attn (a workaround for bug in transformers)

* [misc] skip redunant test

* [misc] remove debug/print code

* [moe] refactor mesh assignment

* Revert "[moe] implement submesh initialization"

This reverts commit 2f9bce6686.

* [chore] change moe_pg_mesh to private

* [misc] remove incompatible test config

* [misc] fix ci failure: change default value to false in moe plugin

* [misc] remove useless condition

* [chore] docstring

* [moe] remove force_overlap_comm flag and add warning instead

* [doc] add MoeHybridParallelPlugin docstring

* [moe] solve dp axis issue

* [chore] remove redundant test case, print string & reduce test tokens

* [feat] Dist Loader for Eval (#5950)

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix tp error

* remove unused parameters

* remove unused

* update inference

* update docs

* update inference

---------

Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [lora] lora support hybrid parallel plugin (#5956)

* lora support hybrid plugin

* fix

* fix

* fix

* fix

* Support overall loss, update KTO logging

* [Docs] clarify launch port

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Hotfix] README link (#5966)

* update ignore

* update readme

* run style

* update readme

* [Hotfix] Avoid fused RMSnorm import error without apex (#5985)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Chat] fix readme (#5989)

* fix readme

* fix readme, tokenization fully tested

* fix readme, tokenization fully tested

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix sync condition (#6000)

* [plugin] add cast inputs option for zero (#6003)

* [pre-commit.ci] pre-commit autoupdate (#5995)

updates:
- [github.com/psf/black-pre-commit-mirror: 24.4.2 → 24.8.0](https://github.com/psf/black-pre-commit-mirror/compare/24.4.2...24.8.0)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [misc] Bypass the huggingface bug to solve the mask mismatch problem (#5991)

* [Feature] Zigzag Ring attention (#5905)

* halfway

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* unified cross entropy func for all shardformer models

* remove redundant lines

* add basic ring attn; debug cross entropy

* fwd bwd logic complete

* fwd bwd logic complete; add experimental triton rescale

* precision tests passed

* precision tests passed

* fix typos and remove misc files

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add sp_mode to benchmark; fix varlen interface

* update softmax_lse shape by new interface

* change tester name

* remove buffer clone; support packed seq layout

* add varlen tests

* fix typo

* all tests passed

* add dkv_group; fix mask

* remove debug statements

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [misc] update compatibility (#6008)

* [misc] update compatibility

* [misc] update requirements

* [devops] disable requirements cache

* [test] fix torch ddp test

* [test] fix rerun on address in use

* [test] fix lazy init

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the merge

* fix the merge

* overlap kv comm with output rescale (#6017)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* fix the merge

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the merge

* fix

* fix

* fix the merge

* fix

* [misc] Use dist logger in plugins (#6011)

* use dist logger in plugins

* remove trash

* print on rank 0

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* fix

* fix

* fix

* fix

* fix the merge

* fix

* fix

* fix

* fix

---------

Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
2024-08-22 09:21:34 +08:00
.github [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016) 2024-08-22 09:21:34 +08:00
applications [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016) 2024-08-22 09:21:34 +08:00
colossalai [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016) 2024-08-22 09:21:34 +08:00
docker [misc] update dockerfile (#5776) 2024-06-04 16:15:41 +08:00
docs [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016) 2024-08-22 09:21:34 +08:00
examples [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016) 2024-08-22 09:21:34 +08:00
extensions [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016) 2024-08-22 09:21:34 +08:00
requirements [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016) 2024-08-22 09:21:34 +08:00
tests [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016) 2024-08-22 09:21:34 +08:00
.clang-format [revert] recover "[refactor] restructure configuration files (#2977)" (#3022) 2023-03-07 13:31:23 +08:00
.compatibility [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016) 2024-08-22 09:21:34 +08:00
.coveragerc [devops] update torch version of CI (#3725) 2023-05-15 17:20:56 +08:00
.cuda_ext.json [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016) 2024-08-22 09:21:34 +08:00
.gitignore [devops] remove post commit ci (#5566) 2024-04-08 15:09:40 +08:00
.gitmodules [misc] remove outdated submodule (#5070) 2023-11-20 15:27:44 +08:00
.isort.cfg [lazy] support torch 2.0 (#4763) 2023-09-21 16:30:23 +08:00
.pre-commit-config.yaml [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016) 2024-08-22 09:21:34 +08:00
CHANGE_LOG.md [doc] updated the CHANGE_LOG.md for github release page (#2552) 2023-02-03 10:47:27 +08:00
CONTRIBUTING.md [doc] add a note about unit-testing to CONTRIBUTING.md (#3970) 2023-06-14 16:32:39 +08:00
LICENSE [Feature] qlora support (#5586) 2024-04-28 10:51:27 +08:00
MANIFEST.in [feat] refactored extension module (#5298) 2024-01-25 17:01:48 +08:00
README.md [doc] add GPU cloud playground (#5851) 2024-06-25 11:03:16 +08:00
pytest.ini [moe] merge moe into main (#4978) 2023-11-02 02:21:24 +00:00
setup.py [install]fix setup (#5786) 2024-06-06 11:47:48 +08:00
version.txt [FP8] rebase main (#5963) 2024-08-06 16:29:37 +08:00

README.md

Colossal-AI

logo

Colossal-AI: Making large AI models cheaper, faster, and more accessible

Paper | Documentation | Examples | Forum | GPU Cloud Playground | Blog

GitHub Repo stars Build Documentation CodeFactor HuggingFace badge slack badge WeChat badge

| English | 中文 |

Latest News

Table of Contents

Why Colossal-AI

Prof. James Demmel (UC Berkeley): Colossal-AI makes training AI models efficient, easy, and scalable.

(back to top)

Features

Colossal-AI provides a collection of parallel components for you. We aim to support you to write your distributed deep learning models just like how you write your model on your laptop. We provide user-friendly tools to kickstart distributed training and inference in a few lines.

(back to top)

Colossal-AI in the Real World

Open-Sora

Open-SoraRevealing Complete Model Parameters, Training Details, and Everything for Sora-like Video Generation Models [code] [blog] [Model weights] [Demo] [GPU Cloud Playground] [OpenSora Image]

(back to top)

Colossal-LLaMA-2

[GPU Cloud Playground] [LLaMA3 Image]

Model Backbone Tokens Consumed MMLU (5-shot) CMMLU (5-shot) AGIEval (5-shot) GAOKAO (0-shot) CEval (5-shot)
Baichuan-7B - 1.2T 42.32 (42.30) 44.53 (44.02) 38.72 36.74 42.80
Baichuan-13B-Base - 1.4T 50.51 (51.60) 55.73 (55.30) 47.20 51.41 53.60
Baichuan2-7B-Base - 2.6T 46.97 (54.16) 57.67 (57.07) 45.76 52.60 54.00
Baichuan2-13B-Base - 2.6T 54.84 (59.17) 62.62 (61.97) 52.08 58.25 58.10
ChatGLM-6B - 1.0T 39.67 (40.63) 41.17 (-) 40.10 36.53 38.90
ChatGLM2-6B - 1.4T 44.74 (45.46) 49.40 (-) 46.36 45.49 51.70
InternLM-7B - 1.6T 46.70 (51.00) 52.00 (-) 44.77 61.64 52.80
Qwen-7B - 2.2T 54.29 (56.70) 56.03 (58.80) 52.47 56.42 59.60
Llama-2-7B - 2.0T 44.47 (45.30) 32.97 (-) 32.60 25.46 -
Linly-AI/Chinese-LLaMA-2-7B-hf Llama-2-7B 1.0T 37.43 29.92 32.00 27.57 -
wenge-research/yayi-7b-llama2 Llama-2-7B - 38.56 31.52 30.99 25.95 -
ziqingyang/chinese-llama-2-7b Llama-2-7B - 33.86 34.69 34.52 25.18 34.2
TigerResearch/tigerbot-7b-base Llama-2-7B 0.3T 43.73 42.04 37.64 30.61 -
LinkSoul/Chinese-Llama-2-7b Llama-2-7B - 48.41 38.31 38.45 27.72 -
FlagAlpha/Atom-7B Llama-2-7B 0.1T 49.96 41.10 39.83 33.00 -
IDEA-CCNL/Ziya-LLaMA-13B-v1.1 Llama-13B 0.11T 50.25 40.99 40.04 30.54 -
Colossal-LLaMA-2-7b-base Llama-2-7B 0.0085T 53.06 49.89 51.48 58.82 50.2
Colossal-LLaMA-2-13b-base Llama-2-13B 0.025T 56.42 61.80 54.69 69.53 60.3

ColossalChat

ColossalChat: An open-source solution for cloning ChatGPT with a complete RLHF pipeline. [code] [blog] [demo] [tutorial]

  • Up to 10 times faster for RLHF PPO Stage3 Training

  • Up to 7.73 times faster for single server training and 1.42 times faster for single-GPU inference

  • Up to 10.3x growth in model capacity on one GPU
  • A mini demo training process requires only 1.62GB of GPU memory (any consumer-grade GPU)

  • Increase the capacity of the fine-tuning model by up to 3.7 times on a single GPU
  • Keep at a sufficiently high running speed

(back to top)

AIGC

Acceleration of AIGC (AI-Generated Content) models such as Stable Diffusion v1 and Stable Diffusion v2.

  • Training: Reduce Stable Diffusion memory consumption by up to 5.6x and hardware cost by up to 46x (from A100 to RTX3060).

  • Inference: Reduce inference GPU memory consumption by 2.5x.

(back to top)

Biomedicine

Acceleration of AlphaFold Protein Structure

  • FastFold: Accelerating training and inference on GPU Clusters, faster data processing, inference sequence containing more than 10000 residues.

  • xTrimoMultimer: accelerating structure prediction of protein monomers and multimer by 11x.

(back to top)

Parallel Training Demo

LLaMA3

LLaMA2

  • 70 billion parameter LLaMA2 model training accelerated by 195% [code] [blog]

LLaMA1

  • 65-billion-parameter large model pretraining accelerated by 38% [code] [blog]

MoE

  • Enhanced MoE parallelism, Open-source MoE model training can be 9 times more efficient [code] [blog]

GPT-3

  • Save 50% GPU resources and 10.7% acceleration

GPT-2

  • 11x lower GPU memory consumption, and superlinear scaling efficiency with Tensor Parallelism
  • 24x larger model size on the same hardware
  • over 3x acceleration

BERT

  • 2x faster training, or 50% longer sequence length

PaLM

OPT

  • Open Pretrained Transformer (OPT), a 175-Billion parameter AI language model released by Meta, which stimulates AI programmers to perform various downstream tasks and application deployments because of public pre-trained model weights.
  • 45% speedup fine-tuning OPT at low cost in lines. [Example] [Online Serving]

Please visit our documentation and examples for more details.

ViT

  • 14x larger batch size, and 5x faster training for Tensor Parallelism = 64

Recommendation System Models

  • Cached Embedding, utilize software cache to train larger embedding tables with a smaller GPU memory budget.

(back to top)

Single GPU Training Demo

GPT-2

  • 20x larger model size on the same hardware

  • 120x larger model size on the same hardware (RTX 3080)

PaLM

  • 34x larger model size on the same hardware

(back to top)

Inference

Colossal-Inference

Grok-1

  • 314 Billion Parameter Grok-1 Inference Accelerated by 3.8x, an easy-to-use Python + PyTorch + HuggingFace version for Inference.

[code] [blog] [HuggingFace Grok-1 PyTorch model weights] [ModelScope Grok-1 PyTorch model weights]

SwiftInfer

  • SwiftInfer: Inference performance improved by 46%, open source solution breaks the length limit of LLM for multi-round conversations

(back to top)

Installation

Requirements:

If you encounter any problem with installation, you may want to raise an issue in this repository.

Install from PyPI

You can easily install Colossal-AI with the following command. By default, we do not build PyTorch extensions during installation.

pip install colossalai

Note: only Linux is supported for now.

However, if you want to build the PyTorch extensions during installation, you can set BUILD_EXT=1.

BUILD_EXT=1 pip install colossalai

Otherwise, CUDA kernels will be built during runtime when you actually need them.

We also keep releasing the nightly version to PyPI every week. This allows you to access the unreleased features and bug fixes in the main branch. Installation can be made via

pip install colossalai-nightly

Download From Source

The version of Colossal-AI will be in line with the main branch of the repository. Feel free to raise an issue if you encounter any problems. :)

git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI

# install colossalai
pip install .

By default, we do not compile CUDA/C++ kernels. ColossalAI will build them during runtime. If you want to install and enable CUDA kernel fusion (compulsory installation when using fused optimizer):

BUILD_EXT=1 pip install .

For Users with CUDA 10.2, you can still build ColossalAI from source. However, you need to manually download the cub library and copy it to the corresponding directory.

# clone the repository
git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI

# download the cub library
wget https://github.com/NVIDIA/cub/archive/refs/tags/1.8.0.zip
unzip 1.8.0.zip
cp -r cub-1.8.0/cub/ colossalai/kernel/cuda_native/csrc/kernels/include/

# install
BUILD_EXT=1 pip install .

(back to top)

Use Docker

Pull from DockerHub

You can directly pull the docker image from our DockerHub page. The image is automatically uploaded upon release.

Build On Your Own

Run the following command to build a docker image from Dockerfile provided.

Building Colossal-AI from scratch requires GPU support, you need to use Nvidia Docker Runtime as the default when doing docker build. More details can be found here. We recommend you install Colossal-AI from our project page directly.

cd ColossalAI
docker build -t colossalai ./docker

Run the following command to start the docker container in interactive mode.

docker run -ti --gpus all --rm --ipc=host colossalai bash

(back to top)

Community

Join the Colossal-AI community on Forum, Slack, and WeChat(微信) to share your suggestions, feedback, and questions with our engineering team.

Contributing

Referring to the successful attempts of BLOOM and Stable Diffusion, any and all developers and partners with computing powers, datasets, models are welcome to join and build the Colossal-AI community, making efforts towards the era of big AI models!

You may contact us or participate in the following ways:

  1. Leaving a Star to show your like and support. Thanks!
  2. Posting an issue, or submitting a PR on GitHub follow the guideline in Contributing
  3. Send your official proposal to email contact@hpcaitech.com

Thanks so much to all of our amazing contributors!

(back to top)

CI/CD

We leverage the power of GitHub Actions to automate our development, release and deployment workflows. Please check out this documentation on how the automated workflows are operated.

Cite Us

This project is inspired by some related projects (some by our team and some by other organizations). We would like to credit these amazing projects as listed in the Reference List.

To cite this project, you can use the following BibTeX citation.

@inproceedings{10.1145/3605573.3605613,
author = {Li, Shenggui and Liu, Hongxin and Bian, Zhengda and Fang, Jiarui and Huang, Haichen and Liu, Yuliang and Wang, Boxiang and You, Yang},
title = {Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training},
year = {2023},
isbn = {9798400708435},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3605573.3605613},
doi = {10.1145/3605573.3605613},
abstract = {The success of Transformer models has pushed the deep learning model scale to billions of parameters, but the memory limitation of a single GPU has led to an urgent need for training on multi-GPU clusters. However, the best practice for choosing the optimal parallel strategy is still lacking, as it requires domain expertise in both deep learning and parallel computing. The Colossal-AI system addressed the above challenge by introducing a unified interface to scale your sequential code of model training to distributed environments. It supports parallel training methods such as data, pipeline, tensor, and sequence parallelism and is integrated with heterogeneous training and zero redundancy optimizer. Compared to the baseline system, Colossal-AI can achieve up to 2.76 times training speedup on large-scale models.},
booktitle = {Proceedings of the 52nd International Conference on Parallel Processing},
pages = {766775},
numpages = {10},
keywords = {datasets, gaze detection, text tagging, neural networks},
location = {Salt Lake City, UT, USA},
series = {ICPP '23}
}

Colossal-AI has been accepted as official tutorial by top conferences NeurIPS, SC, AAAI, PPoPP, CVPR, ISC, NVIDIA GTC ,etc.

(back to top)