You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/optimizer/nvme_optimizer.py

166 lines
6.6 KiB

import math
import os
import tempfile
from typing import Callable, Dict, List, Optional
import torch
from torch.nn.parameter import Parameter
class NVMeOptimizer(torch.optim.Optimizer):
"""A base class for offloading optimizer states.
Args:
params: parameters
defaults (dict): default dict
nvme_offload_fraction (float, optional): Fraction of params to be offloaded to NVMe. Defaults to 0.0.
offload_dir (Optional[str], optional): Directory to save NVMe offload files.
If it's ``None``, a random temporary directory will be used. Defaults to None.
Raises:
ImportError: Raise if ``tensornvme`` is not installed.
"""
def __init__(self,
params,
defaults: dict,
nvme_offload_fraction: float = 0.0,
offload_dir: Optional[str] = None) -> None:
assert 0.0 <= nvme_offload_fraction <= 1.0
super().__init__(params, defaults)
self.nvme_offload_fraction = float(nvme_offload_fraction)
if self.nvme_offload_fraction > 0.0:
try:
from tensornvme import DiskOffloader
from tensornvme._C import get_backends
except ModuleNotFoundError:
raise ModuleNotFoundError('Please install tensornvme to use NVMeOptimizer')
self.offload_dir = offload_dir or tempfile.mkdtemp()
backend = 'uring' if 'uring' in get_backends() else 'aio'
self.offloader = DiskOffloader(self.offload_dir, 8, backend=backend)
else:
self.offload_dir = None
self.offloader = None
self.is_on_nvme: Dict[Parameter, bool] = {}
self.offloaded_numel: int = 0
# As param may be not materialized here, these attributes are initialized when the first step
self.total_numel: Optional[int] = None
self.can_offload_numel: Optional[int] = None
self.prefetch_params: List[Parameter] = []
self.param_to_prefetch_idx: Dict[Parameter, int] = {}
def _get_numel(self) -> int:
numel = 0
for group in self.param_groups:
for p in group['params']:
numel += p.storage().size()
return numel
def _post_state_init(self, param: Parameter) -> None:
numel = param.storage().size()
if self.offloader is not None and param.device.type == 'cpu' and numel + self.offloaded_numel <= self.can_offload_numel:
self.is_on_nvme[param] = True
self.offloaded_numel += numel
else:
self.is_on_nvme[param] = False
def _setup_prefetch_params(self) -> List[Parameter]:
if self.offloader is None:
return
assert len(self.prefetch_params) == 0 and len(self.param_to_prefetch_idx) == 0
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
if len(self.state[p]) > 0 and self.is_on_nvme[p]:
assert p.device.type == 'cpu'
self.param_to_prefetch_idx[p] = len(self.prefetch_params)
self.prefetch_params.append(p)
def _pre_step(self, *state_keys: str) -> None:
if self.total_numel is None:
self.total_numel = self._get_numel()
self.can_offload_numel = math.floor(self.total_numel * self.nvme_offload_fraction)
self._setup_prefetch_params()
if self.offloader is None or len(self.prefetch_params) == 0:
return
state = self.state[self.prefetch_params[0]]
for key in state_keys:
self.offloader.async_read(state[key])
def _pre_update(self, param: Parameter, *state_keys: str) -> None:
if self.offloader is None or param not in self.param_to_prefetch_idx:
return
self.offloader.sync_read_events()
idx = self.param_to_prefetch_idx[param]
if idx + 1 < len(self.prefetch_params):
state = self.state[self.prefetch_params[idx + 1]]
for key in state_keys:
self.offloader.async_read(state[key])
def _post_update(self, param: Parameter, *state_keys: str) -> None:
if self.offloader is None:
return
self.offloader.sync_write_events()
if self.is_on_nvme[param]:
state = self.state[param]
for key in state_keys:
self.offloader.async_write(state[key])
def _post_step(self) -> None:
if self.offloader is not None:
self.offloader.synchronize()
self.prefetch_params.clear()
self.param_to_prefetch_idx.clear()
def step(self, closure: Optional[Callable[[], float]] = ...) -> Optional[float]:
"""Performs a single optimization step (parameter update).
Example:
>>> self._pre_step('exp_avg', 'exp_avg_sq')
>>> for group in self.param_groups:
>>> for p in group['params']:
>>> if p.grad is None:
>>> continue
>>> state = self.state[p]
>>> if len(state) == 0:
>>> state['exp_avg'] = ...
>>> state['exp_avg_sq'] = ...
>>> self._post_state_init(p)
>>> if p.device.type == 'cpu':
>>> self._pre_update(p, 'exp_avg', 'exp_avg_sq')
>>> adam()
>>> self._post_update(p, 'exp_avg', 'exp_avg_sq')
>>> else:
>>> ...
>>> self._post_step()
Args:
closure (Optional[Callable[[], float]], optional): A closure that reevaluates the model and
returns the loss. Optional for most optimizers.
"""
raise NotImplementedError
def state_dict(self) -> dict:
# TODO(ver217): design a new method to save state_dict. When using NVMe offload, this method may lead to OOM.
if self.offloader is not None:
raise NotImplementedError
return super().state_dict()
def load_state_dict(self, state_dict: dict) -> None:
# TODO(ver217): design a new method to load state_dict. When using NVMe offload, whole state_dict may not be able to fit in memory.
if self.offloader is not None:
raise NotImplementedError
super().load_state_dict(state_dict)
def __del__(self) -> None:
if getattr(self, 'offloader', None) is not None:
del self.offloader
if os.path.exists(self.offload_dir):
try:
os.rmdir(self.offload_dir)
except OSError:
pass