You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/_ops/embedding.py

141 lines
6.5 KiB

import torch.nn.functional as F
from typing import Optional
from colossalai.tensor.op_wrapper import colo_op_impl
from colossalai.tensor import ComputePattern, ColoTensorSpec, ComputePattern, ComputeSpec, ColoTensor, ShardSpec, \
ReplicaSpec
from ._utils import GeneralTensor, convert_to_colo_tensor, reduce_input
def colo_embedding_1Dcol(input_tensor: ColoTensor,
weight: ColoTensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False) -> ColoTensor:
# embedding_1Dcol split the weight(lookup table) to (num_embeddings, embedding_dim/P)
# Gather splitted lookup table
input_tensor = input_tensor.redistribute(ReplicaSpec())
output_parallel = F.embedding(input_tensor,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
output_spec = ColoTensorSpec(weight.get_process_group(), ShardSpec([-1], [weight.get_tp_world_size()]),
ComputeSpec(ComputePattern.TP1D))
output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec)
compute_spec = weight.compute_spec
if compute_spec.output_replicate:
return output.to_replicate()
else:
return output
def colo_embedding_1Drow(input_tensor: ColoTensor,
weight: ColoTensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False) -> ColoTensor:
# embedding_1Drow splits the weight(lookup table) to the shape, [num_embeddings/P, embedding_dim]
# get the index of current segment and mask other segments with 0
# get complete input tensor through all-gather
input_tensor = input_tensor.redistribute(ReplicaSpec())
# tensor_parallel_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
tensor_parallel_rank = weight.get_process_group().tp_local_rank()
num_embeddings_per_partition = weight.size_local(0)
vocab_start_index = tensor_parallel_rank * num_embeddings_per_partition
vocab_end_index = vocab_start_index + num_embeddings_per_partition
# build the mask.
input_mask = (input_tensor < vocab_start_index) | (input_tensor >= vocab_end_index)
# mask the input.
# TODO(jzy) masked_input may be an activation managed by ColoTensor.
masked_input = input_tensor - vocab_start_index
masked_input[input_mask] = 0
partial_output = F.embedding(masked_input,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
# Mask the output embedding.
partial_output[input_mask, :] = 0.
# Reduce across all the model parallel GPUs.
output = reduce_input(partial_output, weight.get_process_group())
output = ColoTensor.from_torch_tensor(output, spec=ColoTensorSpec(weight.get_process_group(), ReplicaSpec()))
return output
def colo_embedding_1d(mode: str,
input_tensor: ColoTensor,
weight: ColoTensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False) -> ColoTensor:
assert mode in ('row', 'col')
funcs = {'row': colo_embedding_1Drow, 'col': colo_embedding_1Dcol}
return funcs[mode](input_tensor,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
@colo_op_impl(F.embedding)
def colo_embedding(input_tensor: GeneralTensor,
weight: GeneralTensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False):
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding``.
This method looks up an embedding table.
"""
assert isinstance(weight, ColoTensor)
input_tensor = convert_to_colo_tensor(input_tensor, weight.get_process_group())
if not weight.has_compute_spec(): # No Model Parallel Applied
assert weight.is_replicate(), 'Invalid weight spec for native embedding op'
return ColoTensor.from_torch_tensor(tensor=F.embedding(input_tensor,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse),
spec=ColoTensorSpec(weight.get_process_group()))
elif weight.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied
if weight.is_shard_1drow():
mode = 'row'
elif weight.is_shard_1dcol():
mode = 'col'
else:
raise NotImplementedError
return colo_embedding_1d(mode,
input_tensor,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
else:
raise NotImplementedError