mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
224 lines
5.5 KiB
224 lines
5.5 KiB
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
from typing import Any, Dict, List, Optional, Tuple, Callable
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
|
|
IS_NPU_AVAILABLE: bool = False
|
|
try:
|
|
import torch_npu # noqa
|
|
|
|
IS_NPU_AVAILABLE = torch.npu.is_available()
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
def set_to_cuda(models):
|
|
"""Send model to gpu.
|
|
|
|
:param models: nn.module or a list of module
|
|
"""
|
|
if isinstance(models, list) and len(models) > 1:
|
|
ret = []
|
|
for model in models:
|
|
ret.append(model.to(get_current_device()))
|
|
return ret
|
|
elif isinstance(models, list):
|
|
return models[0].to(get_current_device())
|
|
else:
|
|
return models.to(get_current_device())
|
|
|
|
|
|
def get_current_device() -> torch.device:
|
|
"""
|
|
Returns currently selected device (gpu/cpu).
|
|
If cuda available, return gpu, otherwise return cpu.
|
|
"""
|
|
if torch.cuda.is_available():
|
|
return torch.device(f"cuda:{torch.cuda.current_device()}")
|
|
elif IS_NPU_AVAILABLE:
|
|
return torch.device(f"npu:{torch.npu.current_device()}")
|
|
else:
|
|
return torch.device("cpu")
|
|
|
|
|
|
def _dispatch_device_func(fn_name: str, *args, **kwargs):
|
|
if torch.cuda.is_available():
|
|
return getattr(torch.cuda, fn_name)(*args, **kwargs)
|
|
elif IS_NPU_AVAILABLE:
|
|
return getattr(torch.npu, fn_name)(*args, **kwargs)
|
|
else:
|
|
raise RuntimeError("No device available")
|
|
|
|
|
|
# device semantics
|
|
|
|
|
|
def can_device_access_peer(device, peer_device) -> bool:
|
|
return _dispatch_device_func("can_device_access_peer", device, peer_device)
|
|
|
|
|
|
def current_device() -> int:
|
|
return _dispatch_device_func("current_device")
|
|
|
|
|
|
def current_stream(device=None):
|
|
return _dispatch_device_func("current_stream", device)
|
|
|
|
|
|
def default_stream(device=None):
|
|
return _dispatch_device_func("default_stream", device)
|
|
|
|
|
|
def device_count() -> int:
|
|
return _dispatch_device_func("device_count")
|
|
|
|
|
|
def get_device_capability(device=None) -> Tuple[int, int]:
|
|
return _dispatch_device_func("get_device_capability", device)
|
|
|
|
|
|
def get_device_name(device=None) -> str:
|
|
return _dispatch_device_func("get_device_name", device)
|
|
|
|
|
|
def get_device_properties(device):
|
|
return _dispatch_device_func("get_device_properties", device)
|
|
|
|
|
|
def set_device(index: Optional[int] = None) -> None:
|
|
if index is None:
|
|
index = dist.get_rank() % device_count()
|
|
_dispatch_device_func("set_device", index)
|
|
|
|
|
|
def set_stream(stream_):
|
|
return _dispatch_device_func("set_stream", stream_)
|
|
|
|
|
|
def stream(stream_):
|
|
return _dispatch_device_func("stream", stream_)
|
|
|
|
|
|
def synchronize():
|
|
return _dispatch_device_func("synchronize")
|
|
|
|
|
|
def utilization(device=None) -> int:
|
|
return _dispatch_device_func("utilization", device)
|
|
|
|
|
|
# random number generator
|
|
|
|
|
|
def get_rng_state(device="cuda") -> torch.Tensor:
|
|
return _dispatch_device_func("get_rng_state", device)
|
|
|
|
|
|
def get_rng_state_all() -> List[torch.Tensor]:
|
|
return _dispatch_device_func("get_rng_state_all")
|
|
|
|
|
|
def set_rng_state(new_state: torch.ByteTensor, device="cuda") -> None:
|
|
return _dispatch_device_func("set_rng_state", new_state, device)
|
|
|
|
|
|
def set_rng_state_all(new_states: List[torch.ByteTensor]) -> None:
|
|
return _dispatch_device_func("set_rng_state_all", new_states)
|
|
|
|
|
|
def manual_seed(seed: int) -> None:
|
|
return _dispatch_device_func("manual_seed", seed)
|
|
|
|
|
|
def manual_seed_all(seed: int) -> None:
|
|
return _dispatch_device_func("manual_seed_all", seed)
|
|
|
|
|
|
def seed() -> None:
|
|
return _dispatch_device_func("seed")
|
|
|
|
|
|
def seed_all() -> None:
|
|
return _dispatch_device_func("seed_all")
|
|
|
|
|
|
def initial_seed() -> int:
|
|
return _dispatch_device_func("initial_seed")
|
|
|
|
|
|
# streams and events
|
|
|
|
|
|
def Stream(device=None, priority=0, **kwargs):
|
|
return _dispatch_device_func("Stream", device, priority, **kwargs)
|
|
|
|
|
|
def Event(enable_timing: bool = False, blocking: bool = False, interprocess: bool = False):
|
|
return _dispatch_device_func("Event", enable_timing, blocking, interprocess)
|
|
|
|
|
|
# memory management
|
|
|
|
|
|
def empty_cache() -> None:
|
|
return _dispatch_device_func("empty_cache")
|
|
|
|
|
|
def memory_stats(device=None) -> Dict[str, Any]:
|
|
return _dispatch_device_func("memory_stats", device)
|
|
|
|
|
|
def memory_summary(device=None, abbreviated=False) -> str:
|
|
return _dispatch_device_func("memory_summary", device, abbreviated)
|
|
|
|
|
|
def memory_snapshot():
|
|
return _dispatch_device_func("memory_snapshot")
|
|
|
|
|
|
def memory_allocated(device=None) -> int:
|
|
return _dispatch_device_func("memory_allocated", device)
|
|
|
|
|
|
def max_memory_allocated(device=None) -> int:
|
|
return _dispatch_device_func("max_memory_allocated", device)
|
|
|
|
|
|
def reset_max_memory_allocated(device=None) -> None:
|
|
return _dispatch_device_func("reset_max_memory_allocated", device)
|
|
|
|
|
|
def reset_max_memory_cached(device=None) -> None:
|
|
return _dispatch_device_func("reset_max_memory_cached", device)
|
|
|
|
|
|
def memory_reserved(device=None) -> int:
|
|
return _dispatch_device_func("memory_reserved", device)
|
|
|
|
|
|
def max_memory_reserved(device=None) -> int:
|
|
return _dispatch_device_func("max_memory_reserved", device)
|
|
|
|
|
|
def set_per_process_memory_fraction(fraction: float, device=None) -> None:
|
|
return _dispatch_device_func("set_per_process_memory_fraction", fraction, device)
|
|
|
|
|
|
def reset_peak_memory_stats(device=None) -> None:
|
|
return _dispatch_device_func("reset_peak_memory_stats", device)
|
|
|
|
|
|
# amp
|
|
|
|
|
|
def autocast() -> Callable:
|
|
if torch.cuda.is_available():
|
|
return torch.cuda.amp.autocast()
|
|
elif IS_NPU_AVAILABLE:
|
|
return torch.npu.amp.autocast()
|
|
else:
|
|
raise RuntimeError("No device available")
|