mirror of https://github.com/hpcaitech/ColossalAI
164 lines
5.3 KiB
Python
164 lines
5.3 KiB
Python
# a python safetensors serializer modified from https://github.com/huggingface/safetensors/blob/41bd1acf38ad28ac559522d40596c6c802f79453/safetensors/src/tensor.rs#L214
|
|
import json
|
|
import warnings
|
|
from dataclasses import asdict, dataclass
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import torch
|
|
from safetensors.torch import _TYPES, load_file, safe_open
|
|
|
|
try:
|
|
from tensornvme.async_file_io import AsyncFileWriter
|
|
except ModuleNotFoundError:
|
|
raise ModuleNotFoundError("Please install tensornvme to use NVMeOptimizer")
|
|
_TYPES_INV = {v: k for k, v in _TYPES.items()}
|
|
|
|
|
|
@dataclass
|
|
class TensorInfo:
|
|
dtype: str
|
|
shape: List[int]
|
|
data_offsets: Tuple[int, int]
|
|
|
|
|
|
@dataclass
|
|
class PreparedData:
|
|
n: int
|
|
header_bytes: bytes
|
|
offset: int
|
|
|
|
|
|
def flatten_dict(nested_dict, parent_key="", separator="^"):
|
|
"""
|
|
Flatten a nested dictionary, generating a flattened dictionary where the keys are joined by the specified separator.
|
|
|
|
nested_dict: The input nested dictionary.
|
|
parent_key: The parent key currently being processed.
|
|
separator: The separator used to join keys, default is '_', but can be customized to another symbol. :return: A flattened dictionary."
|
|
"""
|
|
items = []
|
|
for k, v in nested_dict.items():
|
|
new_key = f"{parent_key}{separator}{k}" if parent_key else str(k)
|
|
if isinstance(v, dict):
|
|
items.extend(flatten_dict(v, new_key, separator).items())
|
|
else:
|
|
v = torch.tensor(v, dtype=torch.float16) if not isinstance(v, torch.Tensor) else v
|
|
items.append((new_key, v))
|
|
|
|
return dict(items)
|
|
|
|
|
|
def unflatten_dict(flattened_dict, separator="^"):
|
|
"""
|
|
Restore a flattened dictionary back to a multi-level nested dictionary.
|
|
|
|
flattened_dict: The flattened dictionary.
|
|
separator: The separator used during flattening, default is '_', but can be customized to another symbol. :return: The restored nested dictionary.
|
|
"""
|
|
nested_dict = {}
|
|
for key, value in flattened_dict.items():
|
|
keys = key.split(separator)
|
|
try:
|
|
keys[0] = int(keys[0])
|
|
except ValueError:
|
|
warnings.warn(f"{key[0]} can't convert to integer")
|
|
d = nested_dict
|
|
for part in keys[:-1]:
|
|
if part not in d:
|
|
d[part] = {}
|
|
d = d[part]
|
|
assert isinstance(value, torch.Tensor)
|
|
d[keys[-1]] = value
|
|
|
|
return nested_dict
|
|
|
|
|
|
def prepare(
|
|
data: Dict[str, torch.Tensor], metadata: Optional[Dict[str, str]] = None
|
|
) -> Tuple[PreparedData, List[torch.Tensor], List[str]]:
|
|
if metadata is not None:
|
|
assert isinstance(metadata, dict)
|
|
for k, v in metadata.items():
|
|
metadata[k] = json.dumps(v)
|
|
assert isinstance(k, str)
|
|
assert isinstance(metadata[k], str)
|
|
|
|
tensors = []
|
|
tensor_keys = []
|
|
header = {}
|
|
offset = 0
|
|
|
|
if metadata is not None:
|
|
header["__metadata__"] = metadata
|
|
|
|
for name, tensor in data.items():
|
|
n = tensor.numel() * tensor.element_size()
|
|
tensor_info = TensorInfo(
|
|
dtype=_TYPES_INV[tensor.dtype], shape=list(tensor.shape), data_offsets=(offset, offset + n)
|
|
)
|
|
offset += n
|
|
header[name] = asdict(tensor_info)
|
|
tensors.append(tensor)
|
|
tensor_keys.append(name)
|
|
|
|
header_buf = json.dumps(header).encode("utf-8")
|
|
|
|
extra = (8 - len(header_buf) % 8) % 8
|
|
header_buf += b" " * extra
|
|
|
|
n = len(header_buf)
|
|
|
|
return PreparedData(n=n, header_bytes=header_buf, offset=offset), tensors, tensor_keys
|
|
|
|
|
|
def save(
|
|
f_writer: AsyncFileWriter, state_dict: Dict[str, torch.Tensor], metadata: Optional[Dict[str, str]] = None
|
|
) -> None:
|
|
prepared_data, tensors, _ = prepare(state_dict, metadata)
|
|
n, header_bytes, _ = prepared_data.n, prepared_data.header_bytes, prepared_data.offset
|
|
|
|
f_writer.write(n.to_bytes(8, byteorder="little"))
|
|
f_writer.write(header_bytes)
|
|
|
|
for tensor in tensors:
|
|
f_writer.write_raw(tensor, tensor.data_ptr(), tensor.numel() * tensor.element_size(), f_writer.offset)
|
|
|
|
|
|
def save_nested(
|
|
f_writer: AsyncFileWriter, state_dict: Dict[str, torch.Tensor], metadata: Optional[Dict[str, str]] = None
|
|
) -> None:
|
|
flatten_data = flatten_dict(state_dict)
|
|
save(f_writer, flatten_data, metadata)
|
|
|
|
|
|
def move_and_save(
|
|
f_writer: AsyncFileWriter,
|
|
state_dict: Dict[str, torch.Tensor],
|
|
state_dict_pinned: Optional[Dict[str, torch.Tensor]] = None,
|
|
) -> None:
|
|
prepared_data, _, tensor_keys = prepare(state_dict)
|
|
n, header_bytes, _ = prepared_data.n, prepared_data.header_bytes, prepared_data.offset
|
|
|
|
f_writer.write(n.to_bytes(8, byteorder="little"))
|
|
f_writer.write(header_bytes)
|
|
|
|
f_writer.register_h2d(len(tensor_keys))
|
|
for name in tensor_keys:
|
|
if state_dict_pinned:
|
|
f_writer.write_tensor(state_dict[name], state_dict_pinned[name])
|
|
else:
|
|
f_writer.write_tensor(state_dict[name])
|
|
|
|
|
|
def load_flat(checkpoint_path):
|
|
with safe_open(checkpoint_path, framework="pt") as f:
|
|
metadata = f.metadata()
|
|
state_dict_load = load_file(checkpoint_path)
|
|
state_dict = unflatten_dict(state_dict_load)
|
|
if metadata is None:
|
|
return state_dict
|
|
metadata = dict(map(lambda item: (item[0], json.loads(item[1])), metadata.items()))
|
|
combined_state_dict = {"state": state_dict}
|
|
combined_state_dict.update(metadata)
|
|
return combined_state_dict
|