You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_layers/test_3d/test_operation.py

466 lines
17 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from colossalai.context import ParallelMode
from colossalai.core import global_context
from colossalai.logging import get_global_dist_logger
from colossalai.nn.layer.parallel_3d._operation import *
from colossalai.utils import get_current_device
from common import *
def check_AB():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
dtype = torch.float
j = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE)
B_master = torch.randn(B_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(B_master, src=0)
B = torch.chunk(B_master, DEPTH, dim=0)[k]
B = torch.chunk(B, DEPTH, dim=-1)[j]
B = torch.chunk(B, DEPTH, dim=-1)[i]
B = B.clone()
B.requires_grad = True
out = Matmul_AB_3D.apply(A, B, DEPTH, ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
ParallelMode.PARALLEL_3D_OUTPUT)
C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE)
A_master = A_master.clone()
A_master.requires_grad = True
B_master = B_master.clone()
B_master.requires_grad = True
C_master = torch.matmul(A_master, B_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
# check forward correctness
logger.info('Rank {} AB forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = torch.chunk(grad, DEPTH, dim=0)[k]
out.backward(grad)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
# check backward correctness
logger.info('Rank {} AB backward (A_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
B_grad = B_master.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
# check backward correctness
logger.info('Rank {} AB backward (B_grad): {}'.format(
rank, check_equal(B_grad, B.grad)))
def check_ABT():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE)
C_master = torch.randn(C_shape, dtype=dtype, device=device)
torch.distributed.broadcast(C_master, src=0)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
C = C.clone()
C.requires_grad = True
B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE)
B_master = torch.randn(B_shape, dtype=dtype, device=device)
torch.distributed.broadcast(B_master, src=0)
B = torch.chunk(B_master, DEPTH, dim=0)[k]
B = torch.chunk(B, DEPTH, dim=-1)[j]
B = torch.chunk(B, DEPTH, dim=-1)[i]
B = B.clone()
B.requires_grad = True
out = Matmul_ABT_3D.apply(C, B, DEPTH, ParallelMode.PARALLEL_3D_OUTPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
ParallelMode.PARALLEL_3D_INPUT)
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
C_master = C_master.clone()
C_master.requires_grad = True
B_master = B_master.clone()
B_master.requires_grad = True
A_master = torch.matmul(C_master, B_master.transpose(0, 1))
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
logger.info('Rank {} ABT forward: {}'.format(rank, check_equal(out, A)))
grad_shape = A_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
# backward
out.backward(grad)
A_master.backward(grad_master)
C_grad = C_master.grad
C_grad = torch.chunk(C_grad, DEPTH, dim=0)[i]
C_grad = torch.chunk(C_grad, DEPTH, dim=-1)[j]
C_grad = torch.chunk(C_grad, DEPTH, dim=0)[k]
logger.info('Rank {} ABT backward (A_grad): {}'.format(
rank, check_equal(C_grad, C.grad)))
B_grad = B_master.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
logger.info('Rank {} ABT backward (B_grad): {}'.format(
rank, check_equal(B_grad, B.grad)))
def check_ATB():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
device = get_current_device()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE)
C_master = torch.randn(C_shape, dtype=dtype, device=device)
torch.distributed.broadcast(C_master, src=0)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
C = C.clone()
C.requires_grad = True
out = Matmul_ATB_3D.apply(A, C, DEPTH, ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_OUTPUT,
ParallelMode.PARALLEL_3D_WEIGHT)
B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = C_master.clone()
C_master.requires_grad = True
B_master = torch.matmul(
A_master.view(-1, A_master.shape[-1]).transpose(0, 1),
C_master.view(-1, C_master.shape[-1]))
B = torch.chunk(B_master, DEPTH, dim=0)[k]
B = torch.chunk(B, DEPTH, dim=-1)[j]
B = torch.chunk(B, DEPTH, dim=-1)[i]
logger.info('Rank {} ATB forward: {}'.format(rank, check_equal(out, B)))
grad_shape = B_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[k]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = torch.chunk(grad, DEPTH, dim=-1)[i]
out.backward(grad)
B_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} ATB backward (A_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
C_grad = C_master.grad
C_grad = torch.chunk(C_grad, DEPTH, dim=0)[i]
C_grad = torch.chunk(C_grad, DEPTH, dim=-1)[j]
C_grad = torch.chunk(C_grad, DEPTH, dim=0)[k]
logger.info('Rank {} ATB backward (B_grad): {}'.format(
rank, check_equal(C_grad, C.grad)))
def check_add():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
bias_shape = (HIDDEN_SIZE, )
bias_master = torch.randn(bias_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(bias_master, src=0)
bias = torch.chunk(bias_master, DEPTH)[j]
bias = torch.chunk(bias, DEPTH)[i]
bias = bias.clone()
bias.requires_grad = True
out = Add_3D.apply(A, bias, DEPTH, ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
ParallelMode.PARALLEL_3D_OUTPUT)
A_master = A_master.clone()
A_master.requires_grad = True
bias_master = bias_master.clone()
bias_master.requires_grad = True
C_master = A_master + bias_master
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} Add forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
out.backward(grad)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} Add backward (A_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
if j == k:
bias_grad = bias_master.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
bias_grad = torch.chunk(bias_grad, DEPTH)[i]
logger.info('Rank {} Add backward (b_grad): {}'.format(
rank, check_equal(bias_grad, bias.grad)))
else:
logger.info('Rank {} Add backward (b_grad): {}'.format(
rank,
# np.count_nonzero(bias.grad.detach().cpu().numpy()) == 0))
bias.grad is None))
def check_mul():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
bias_shape = (HIDDEN_SIZE, )
bias_master = torch.randn(bias_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(bias_master, src=0)
bias = torch.chunk(bias_master, DEPTH)[j]
bias = torch.chunk(bias, DEPTH)[i]
bias = bias.clone()
bias.requires_grad = True
out = Mul_3D.apply(A, bias, DEPTH, ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
ParallelMode.PARALLEL_3D_OUTPUT)
A_master = A_master.clone()
A_master.requires_grad = True
bias_master = bias_master.clone()
bias_master.requires_grad = True
C_master = torch.mul(A_master, bias_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} Mul forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
out.backward(grad)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} Mul backward (A_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
if j == k:
bias_grad = bias_master.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
bias_grad = torch.chunk(bias_grad, DEPTH)[i]
logger.info('Rank {} Mul backward (b_grad): {}'.format(
rank, check_equal(bias_grad, bias.grad)))
else:
logger.info('Rank {} Mul backward (b_grad): {}'.format(
rank,
# np.count_nonzero(bias.grad.detach().cpu().numpy()) == 0))
bias.grad is None))
def check_sum():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
# tensor
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
out_tensor = Sum_3D.apply(A, -1, DEPTH, ParallelMode.PARALLEL_3D_OUTPUT)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = torch.sum(A_master, dim=-1)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} Sum forward: {}'.format(rank,
check_equal(out_tensor, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
out_tensor.backward(grad / DEPTH)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} Sum backward: {}'.format(rank,
check_equal(A_grad, A.grad)))
def check_reduce():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
# scaler
B_shape = (DEPTH * DEPTH, DEPTH)
B_master = torch.randn(B_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(B_master, src=0)
B = torch.chunk(B_master, DEPTH, dim=0)[i]
B = torch.chunk(B, DEPTH, dim=-1)[k]
B = torch.chunk(B, DEPTH, dim=0)[j]
B = torch.squeeze(B)
B = B.clone()
B.requires_grad = True
out_scaler = Reduce_3D.apply(B, 0, DEPTH, ParallelMode.PARALLEL_3D_OUTPUT)
out_scaler = Reduce_3D.apply(out_scaler, 0, DEPTH,
ParallelMode.PARALLEL_3D_INPUT)
out_scaler = Reduce_3D.apply(out_scaler, 0, DEPTH,
ParallelMode.PARALLEL_3D_WEIGHT)
B_master = B_master.clone()
B_master.requires_grad = True
D = torch.sum(B_master)
logger.info('Rank {} Reduce forward: {}'.format(rank,
check_equal(out_scaler,
D)))
grad_shape = D.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
out_scaler.backward(grad_master)
D.backward(grad_master)
B_grad = B_master.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j]
B_grad = torch.squeeze(B_grad)
logger.info('Rank {} Reduce backward: {}'.format(
rank, check_equal(B_grad, B.grad)))