ColossalAI/colossalai/shardformer/policies/gpt2.py

554 lines
22 KiB
Python

import warnings
from functools import partial
from typing import Callable, Dict, List
from torch import Tensor, nn
import colossalai.shardformer.layer as col_nn
from ..modeling.gpt2 import (
GPT2PipelineForwards,
get_gpt2_flash_attention_forward,
get_gpt_model_forward_for_flash_attn,
get_jit_fused_gpt2_mlp_forward,
get_lm_forward_with_dist_cross_entropy,
gpt2_sequence_parallel_forward_fn,
)
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = [
"GPT2Policy",
"GPT2ModelPolicy",
"GPT2LMHeadModelPolicy",
"GPT2DoubleHeadsModelPolicy",
"GPT2ForTokenClassificationPolicy",
"GPT2ForSequenceClassificationPolicy",
]
class GPT2Policy(Policy):
def config_sanity_check(self):
pass
def preprocess(self):
# reshape the embedding layer
r"""
Reshape the Embedding layer to make the embedding dimension divisible by world_size
"""
self.tie_weight = self.tie_weight_check()
self.origin_attn_implement = self.model.config._attn_implementation
self.enable_bias_gelu_fused = (
self.shard_config.enable_jit_fused and self.model.config.activation_function == "gelu"
)
return self.model
def module_policy(self):
from transformers.models.gpt2.modeling_gpt2 import GPT2MLP, GPT2Attention, GPT2Block, GPT2Model
ATTN_IMPLEMENTATION = {
"eager": GPT2Attention,
}
policy = {}
attn_cls = ATTN_IMPLEMENTATION[self.origin_attn_implement]
embedding_cls = None
if self.shard_config.enable_tensor_parallelism:
embedding_cls = col_nn.VocabParallelEmbedding1D
else:
if self.tie_weight:
embedding_cls = col_nn.PaddingEmbedding
if self.shard_config.enable_fused_normalization:
norm_cls = col_nn.FusedLayerNorm
else:
norm_cls = col_nn.LayerNorm
sp_mode = self.shard_config.sequence_parallelism_mode or None
assert sp_mode != "all_to_all", "all_to_all sequence parallelism is not supported for GPT2"
if sp_mode == "ring":
warnings.warn(
f"For GPT2, sequence parallelism is currently not support mode {sp_mode}, will set to be split_gather"
)
sp_mode = "split_gather"
overlap = self.shard_config.enable_sequence_overlap
sp_partial_derived = sp_mode in ["split_gather", "ring"]
use_flash_attention = self.shard_config.enable_flash_attention
# todo: currently sp cannot be used with flashattention
if sp_mode in ["split_gather", "ring", "all_to_all"]:
if use_flash_attention:
warnings.warn(
f"Sequence parallelism mode {sp_mode} cannot be used with FlashAttention, will disable FlashAttention automatically."
)
self.shard_config.enable_flash_attention = False
use_flash_attention = False
if self.shard_config.enable_tensor_parallelism:
assert (
self.model.config.num_attention_heads % self.shard_config.tensor_parallel_size == 0
), f"The number of attention heads must be divisible by tensor parallel size."
policy[GPT2Model] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="drop",
target_module=col_nn.DropoutForParallelInput,
),
]
)
policy[GPT2Block] = ModulePolicyDescription(
attribute_replacement={
"attn.embed_dim": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"attn.split_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="attn.c_attn",
target_module=col_nn.GPT2FusedLinearConv1D_Col,
kwargs={
"n_fused": 3,
"seq_parallel_mode": sp_mode,
"overlap": overlap,
},
),
SubModuleReplacementDescription(
suffix="attn.c_proj",
target_module=col_nn.GPT2FusedLinearConv1D_Row,
kwargs={
"seq_parallel_mode": sp_mode,
},
),
SubModuleReplacementDescription(
suffix="mlp.c_fc",
target_module=col_nn.GPT2FusedLinearConv1D_Col,
kwargs={
"n_fused": 1,
"seq_parallel_mode": sp_mode,
"overlap": overlap,
"skip_bias_add": self.enable_bias_gelu_fused,
},
),
SubModuleReplacementDescription(
suffix="mlp.c_proj",
target_module=col_nn.GPT2FusedLinearConv1D_Row,
kwargs={
"seq_parallel_mode": sp_mode,
},
),
SubModuleReplacementDescription(
suffix="attn.attn_dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="attn.resid_dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="mlp.dropout",
target_module=col_nn.DropoutForParallelInput,
),
],
)
if self.enable_bias_gelu_fused:
self.append_or_create_method_replacement(
description={
"forward": get_jit_fused_gpt2_mlp_forward(),
},
policy=policy,
target_key=GPT2MLP,
)
if embedding_cls is not None:
# padding vocabulary size when using pp to make it divisible by shard_config.make_vocab_size_divisible_by
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="wte",
target_module=embedding_cls,
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
),
policy=policy,
target_key=GPT2Model,
)
# optimization configuration
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="ln_f",
target_module=norm_cls,
),
policy=policy,
target_key=GPT2Model,
)
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="ln_1",
target_module=norm_cls,
kwargs={"sp_partial_derived": sp_partial_derived},
),
SubModuleReplacementDescription(
suffix="ln_2",
target_module=norm_cls,
kwargs={"sp_partial_derived": sp_partial_derived},
),
SubModuleReplacementDescription(
suffix="ln_cross_attn",
target_module=norm_cls,
ignore_if_not_exist=True,
kwargs={"sp_partial_derived": sp_partial_derived},
),
],
policy=policy,
target_key=GPT2Block,
)
if use_flash_attention:
self.append_or_create_method_replacement(
description={
"forward": get_gpt2_flash_attention_forward(),
},
policy=policy,
target_key=attn_cls,
)
if not self.shard_config.pipeline_stage_manager:
policy[GPT2Model].method_replacement = {
"forward": get_gpt_model_forward_for_flash_attn(self.shard_config)
}
if sp_mode is not None:
policy[GPT2Model].method_replacement = {"forward": gpt2_sequence_parallel_forward_fn(self.shard_config)}
return policy
def postprocess(self):
return self.model
def get_held_layers(self) -> List[nn.Module]:
"""Get pipeline layers for current stage."""
assert self.pipeline_stage_manager is not None
if self.model.__class__.__name__ == "GPT2Model":
module = self.model
else:
module = self.model.transformer
stage_manager = self.pipeline_stage_manager
held_layers = []
if stage_manager.is_interleave:
assert stage_manager.num_model_chunks is not None
layers_per_stage = stage_manager.distribute_layers(len(module.h))
stage_indices = stage_manager.get_stage_index(layers_per_stage)
if stage_manager.is_first_stage(ignore_chunk=True):
held_layers.append(module.wte)
held_layers.append(module.wpe)
held_layers.append(module.drop)
for start_idx, end_idx in stage_indices:
held_layers.extend(module.h[start_idx:end_idx])
if stage_manager.is_last_stage(ignore_chunk=True):
held_layers.append(module.ln_f)
else:
layers_per_stage = stage_manager.distribute_layers(len(module.h))
if stage_manager.is_first_stage():
held_layers.append(module.wte)
held_layers.append(module.wpe)
held_layers.append(module.drop)
start_idx, end_idx = stage_manager.get_stage_index(layers_per_stage)
held_layers.extend(module.h[start_idx:end_idx])
if stage_manager.is_last_stage():
held_layers.append(module.ln_f)
return held_layers
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
"""If under pipeline parallel setting, replacing the original forward method of huggingface
to customized forward method, and add this changing to policy."""
if not self.pipeline_stage_manager:
raise ValueError("set_pipeline_forward method can only be called when pipeline parallel is enabled.")
stage_manager = self.pipeline_stage_manager
if self.model.__class__.__name__ == "GPT2Model":
module = self.model
else:
module = self.model.transformer
if stage_manager.is_interleave:
layers_per_stage = stage_manager.distribute_layers(len(module.h))
stage_manager.stage_indices = stage_manager.get_stage_index(layers_per_stage)
method_replacement = {
"forward": partial(
new_forward,
stage_manager=stage_manager,
shard_config=self.shard_config,
)
}
else:
layers_per_stage = stage_manager.distribute_layers(len(module.h))
stage_index = stage_manager.get_stage_index(layers_per_stage)
method_replacement = {
"forward": partial(
new_forward,
stage_manager=stage_manager,
stage_index=stage_index,
shard_config=self.shard_config,
)
}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)
# GPT2Model
class GPT2ModelPolicy(GPT2Policy):
def module_policy(self):
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
policy = super().module_policy()
if self.pipeline_stage_manager is not None:
self.set_pipeline_forward(
model_cls=GPT2Model,
new_forward=GPT2PipelineForwards.gpt2_model_forward,
policy=policy,
)
return policy
def get_held_layers(self) -> List[nn.Module]:
return super().get_held_layers()
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared params in GPT2Model."""
return []
# GPT2LMHeadModel
class GPT2LMHeadModelPolicy(GPT2Policy):
def module_policy(self):
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
module_policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
addon_module = {
GPT2LMHeadModel: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="lm_head",
target_module=col_nn.VocabParallelLMHead1D,
kwargs={
"gather_output": False,
"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by,
},
)
],
)
}
if self.shard_config.parallel_output:
addon_module[GPT2LMHeadModel].method_replacement = {
"forward": get_lm_forward_with_dist_cross_entropy(self.shard_config)
}
else:
addon_module = {
GPT2LMHeadModel: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="lm_head",
target_module=col_nn.PaddingLMHead,
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
)
]
)
}
module_policy.update(addon_module)
if self.pipeline_stage_manager is not None:
self.set_pipeline_forward(
model_cls=GPT2LMHeadModel,
new_forward=GPT2PipelineForwards.gpt2_lmhead_model_forward,
policy=module_policy,
)
return module_policy
def get_held_layers(self) -> List[nn.Module]:
held_layers = super().get_held_layers()
if self.pipeline_stage_manager.is_last_stage(ignore_chunk=True):
held_layers.append(self.model.lm_head)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""The weights of wte and lm_head are shared."""
module = self.model
stage_manager = self.pipeline_stage_manager
if stage_manager is not None:
if stage_manager.num_stages > 1 and id(module.transformer.wte.weight) == id(module.lm_head.weight):
first_stage, last_stage = 0, stage_manager.num_stages - 1
return [
{
first_stage: module.transformer.wte.weight,
last_stage: module.lm_head.weight,
}
]
return []
# GPT2DoubleHeadsModel
class GPT2DoubleHeadsModelPolicy(GPT2Policy):
def module_policy(self):
from transformers.models.gpt2.modeling_gpt2 import GPT2DoubleHeadsModel
module_policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
addon_module = {
GPT2DoubleHeadsModel: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="lm_head",
target_module=col_nn.VocabParallelLMHead1D,
kwargs={
"gather_output": True,
"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by,
},
)
]
)
}
else:
addon_module = {
GPT2DoubleHeadsModel: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="lm_head",
target_module=col_nn.PaddingLMHead,
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
)
]
)
}
module_policy.update(addon_module)
if self.pipeline_stage_manager is not None:
self.set_pipeline_forward(
model_cls=GPT2DoubleHeadsModel,
new_forward=GPT2PipelineForwards.gpt2_double_heads_model_forward,
policy=module_policy,
)
return module_policy
def get_held_layers(self) -> List[nn.Module]:
held_layers = super().get_held_layers()
if self.pipeline_stage_manager.is_last_stage():
multiple_choice_head = self.model.multiple_choice_head
held_layers.append(self.model.lm_head)
held_layers.append(multiple_choice_head.summary)
held_layers.append(multiple_choice_head.activation)
held_layers.append(multiple_choice_head.first_dropout)
held_layers.append(multiple_choice_head.last_dropout)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""The weights of wte and lm_head are shared."""
module = self.model
stage_manager = self.pipeline_stage_manager
if stage_manager is not None:
if stage_manager.num_stages > 1 and id(module.transformer.wte.weight) == id(module.lm_head.weight):
first_stage, last_stage = 0, stage_manager.num_stages - 1
return [
{
first_stage: module.transformer.wte.weight,
last_stage: module.lm_head.weight,
}
]
return []
# GPT2ForQuestionAnswering
class GPT2ForQuestionAnsweringPolicy(GPT2Policy):
def module_policy(self):
from transformers.models.gpt2.modeling_gpt2 import GPT2ForQuestionAnswering
module_policy = super().module_policy()
if self.pipeline_stage_manager is not None:
self.set_pipeline_forward(
model_cls=GPT2ForQuestionAnswering,
new_forward=GPT2PipelineForwards.gpt2_for_question_answering_forward,
policy=module_policy,
)
return module_policy
def get_held_layers(self) -> List[nn.Module]:
held_layers = super().get_held_layers()
if self.pipeline_stage_manager.is_last_stage():
held_layers.append(self.model.qa_outputs)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared_params in gpt2 for QA."""
return []
# GPT2ForTokenClassification
class GPT2ForTokenClassificationPolicy(GPT2Policy):
def module_policy(self):
from transformers.models.gpt2.modeling_gpt2 import GPT2ForTokenClassification
module_policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
addon_module = {
GPT2ForTokenClassification: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.DropoutForParallelInput,
)
]
)
}
module_policy.update(addon_module)
if self.pipeline_stage_manager is not None:
self.set_pipeline_forward(
model_cls=GPT2ForTokenClassification,
new_forward=GPT2PipelineForwards.gpt2_for_token_classification_forward,
policy=module_policy,
)
return module_policy
def get_held_layers(self) -> List[nn.Module]:
held_layers = super().get_held_layers()
if self.pipeline_stage_manager.is_last_stage():
held_layers.append(self.model.dropout)
held_layers.append(self.model.classifier)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared params in GPT2ForTokenClassification."""
return []
# GPT2ForSequenceClassification
class GPT2ForSequenceClassificationPolicy(GPT2Policy):
def module_policy(self):
from transformers.models.gpt2.modeling_gpt2 import GPT2ForSequenceClassification
module_policy = super().module_policy()
if self.pipeline_stage_manager is not None:
self.set_pipeline_forward(
model_cls=GPT2ForSequenceClassification,
new_forward=GPT2PipelineForwards.gpt2_for_sequence_classification_forward,
policy=module_policy,
)
return module_policy
def get_held_layers(self) -> List[nn.Module]:
held_layers = super().get_held_layers()
if self.pipeline_stage_manager.is_last_stage():
held_layers.append(self.model.score)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared params in GPT2ForTokenClassification."""
return []