mirror of https://github.com/hpcaitech/ColossalAI
554 lines
22 KiB
Python
554 lines
22 KiB
Python
import warnings
|
|
from functools import partial
|
|
from typing import Callable, Dict, List
|
|
|
|
from torch import Tensor, nn
|
|
|
|
import colossalai.shardformer.layer as col_nn
|
|
|
|
from ..modeling.gpt2 import (
|
|
GPT2PipelineForwards,
|
|
get_gpt2_flash_attention_forward,
|
|
get_gpt_model_forward_for_flash_attn,
|
|
get_jit_fused_gpt2_mlp_forward,
|
|
get_lm_forward_with_dist_cross_entropy,
|
|
gpt2_sequence_parallel_forward_fn,
|
|
)
|
|
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
__all__ = [
|
|
"GPT2Policy",
|
|
"GPT2ModelPolicy",
|
|
"GPT2LMHeadModelPolicy",
|
|
"GPT2DoubleHeadsModelPolicy",
|
|
"GPT2ForTokenClassificationPolicy",
|
|
"GPT2ForSequenceClassificationPolicy",
|
|
]
|
|
|
|
|
|
class GPT2Policy(Policy):
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
# reshape the embedding layer
|
|
r"""
|
|
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
|
"""
|
|
self.tie_weight = self.tie_weight_check()
|
|
self.origin_attn_implement = self.model.config._attn_implementation
|
|
self.enable_bias_gelu_fused = (
|
|
self.shard_config.enable_jit_fused and self.model.config.activation_function == "gelu"
|
|
)
|
|
return self.model
|
|
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2MLP, GPT2Attention, GPT2Block, GPT2Model
|
|
|
|
ATTN_IMPLEMENTATION = {
|
|
"eager": GPT2Attention,
|
|
}
|
|
|
|
policy = {}
|
|
|
|
attn_cls = ATTN_IMPLEMENTATION[self.origin_attn_implement]
|
|
|
|
embedding_cls = None
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
embedding_cls = col_nn.VocabParallelEmbedding1D
|
|
else:
|
|
if self.tie_weight:
|
|
embedding_cls = col_nn.PaddingEmbedding
|
|
|
|
if self.shard_config.enable_fused_normalization:
|
|
norm_cls = col_nn.FusedLayerNorm
|
|
else:
|
|
norm_cls = col_nn.LayerNorm
|
|
|
|
sp_mode = self.shard_config.sequence_parallelism_mode or None
|
|
assert sp_mode != "all_to_all", "all_to_all sequence parallelism is not supported for GPT2"
|
|
if sp_mode == "ring":
|
|
warnings.warn(
|
|
f"For GPT2, sequence parallelism is currently not support mode {sp_mode}, will set to be split_gather"
|
|
)
|
|
sp_mode = "split_gather"
|
|
overlap = self.shard_config.enable_sequence_overlap
|
|
sp_partial_derived = sp_mode in ["split_gather", "ring"]
|
|
use_flash_attention = self.shard_config.enable_flash_attention
|
|
# todo: currently sp cannot be used with flashattention
|
|
if sp_mode in ["split_gather", "ring", "all_to_all"]:
|
|
if use_flash_attention:
|
|
warnings.warn(
|
|
f"Sequence parallelism mode {sp_mode} cannot be used with FlashAttention, will disable FlashAttention automatically."
|
|
)
|
|
self.shard_config.enable_flash_attention = False
|
|
use_flash_attention = False
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
assert (
|
|
self.model.config.num_attention_heads % self.shard_config.tensor_parallel_size == 0
|
|
), f"The number of attention heads must be divisible by tensor parallel size."
|
|
policy[GPT2Model] = ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="drop",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
]
|
|
)
|
|
|
|
policy[GPT2Block] = ModulePolicyDescription(
|
|
attribute_replacement={
|
|
"attn.embed_dim": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"attn.split_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="attn.c_attn",
|
|
target_module=col_nn.GPT2FusedLinearConv1D_Col,
|
|
kwargs={
|
|
"n_fused": 3,
|
|
"seq_parallel_mode": sp_mode,
|
|
"overlap": overlap,
|
|
},
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="attn.c_proj",
|
|
target_module=col_nn.GPT2FusedLinearConv1D_Row,
|
|
kwargs={
|
|
"seq_parallel_mode": sp_mode,
|
|
},
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.c_fc",
|
|
target_module=col_nn.GPT2FusedLinearConv1D_Col,
|
|
kwargs={
|
|
"n_fused": 1,
|
|
"seq_parallel_mode": sp_mode,
|
|
"overlap": overlap,
|
|
"skip_bias_add": self.enable_bias_gelu_fused,
|
|
},
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.c_proj",
|
|
target_module=col_nn.GPT2FusedLinearConv1D_Row,
|
|
kwargs={
|
|
"seq_parallel_mode": sp_mode,
|
|
},
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="attn.attn_dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="attn.resid_dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
],
|
|
)
|
|
if self.enable_bias_gelu_fused:
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": get_jit_fused_gpt2_mlp_forward(),
|
|
},
|
|
policy=policy,
|
|
target_key=GPT2MLP,
|
|
)
|
|
if embedding_cls is not None:
|
|
# padding vocabulary size when using pp to make it divisible by shard_config.make_vocab_size_divisible_by
|
|
self.append_or_create_submodule_replacement(
|
|
description=SubModuleReplacementDescription(
|
|
suffix="wte",
|
|
target_module=embedding_cls,
|
|
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
|
|
),
|
|
policy=policy,
|
|
target_key=GPT2Model,
|
|
)
|
|
|
|
# optimization configuration
|
|
self.append_or_create_submodule_replacement(
|
|
description=SubModuleReplacementDescription(
|
|
suffix="ln_f",
|
|
target_module=norm_cls,
|
|
),
|
|
policy=policy,
|
|
target_key=GPT2Model,
|
|
)
|
|
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="ln_1",
|
|
target_module=norm_cls,
|
|
kwargs={"sp_partial_derived": sp_partial_derived},
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="ln_2",
|
|
target_module=norm_cls,
|
|
kwargs={"sp_partial_derived": sp_partial_derived},
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="ln_cross_attn",
|
|
target_module=norm_cls,
|
|
ignore_if_not_exist=True,
|
|
kwargs={"sp_partial_derived": sp_partial_derived},
|
|
),
|
|
],
|
|
policy=policy,
|
|
target_key=GPT2Block,
|
|
)
|
|
|
|
if use_flash_attention:
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": get_gpt2_flash_attention_forward(),
|
|
},
|
|
policy=policy,
|
|
target_key=attn_cls,
|
|
)
|
|
if not self.shard_config.pipeline_stage_manager:
|
|
policy[GPT2Model].method_replacement = {
|
|
"forward": get_gpt_model_forward_for_flash_attn(self.shard_config)
|
|
}
|
|
|
|
if sp_mode is not None:
|
|
policy[GPT2Model].method_replacement = {"forward": gpt2_sequence_parallel_forward_fn(self.shard_config)}
|
|
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
assert self.pipeline_stage_manager is not None
|
|
|
|
if self.model.__class__.__name__ == "GPT2Model":
|
|
module = self.model
|
|
else:
|
|
module = self.model.transformer
|
|
stage_manager = self.pipeline_stage_manager
|
|
|
|
held_layers = []
|
|
if stage_manager.is_interleave:
|
|
assert stage_manager.num_model_chunks is not None
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.h))
|
|
stage_indices = stage_manager.get_stage_index(layers_per_stage)
|
|
if stage_manager.is_first_stage(ignore_chunk=True):
|
|
held_layers.append(module.wte)
|
|
held_layers.append(module.wpe)
|
|
held_layers.append(module.drop)
|
|
for start_idx, end_idx in stage_indices:
|
|
held_layers.extend(module.h[start_idx:end_idx])
|
|
if stage_manager.is_last_stage(ignore_chunk=True):
|
|
held_layers.append(module.ln_f)
|
|
else:
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.h))
|
|
if stage_manager.is_first_stage():
|
|
held_layers.append(module.wte)
|
|
held_layers.append(module.wpe)
|
|
held_layers.append(module.drop)
|
|
start_idx, end_idx = stage_manager.get_stage_index(layers_per_stage)
|
|
held_layers.extend(module.h[start_idx:end_idx])
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(module.ln_f)
|
|
return held_layers
|
|
|
|
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
|
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
|
to customized forward method, and add this changing to policy."""
|
|
if not self.pipeline_stage_manager:
|
|
raise ValueError("set_pipeline_forward method can only be called when pipeline parallel is enabled.")
|
|
stage_manager = self.pipeline_stage_manager
|
|
if self.model.__class__.__name__ == "GPT2Model":
|
|
module = self.model
|
|
else:
|
|
module = self.model.transformer
|
|
|
|
if stage_manager.is_interleave:
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.h))
|
|
stage_manager.stage_indices = stage_manager.get_stage_index(layers_per_stage)
|
|
method_replacement = {
|
|
"forward": partial(
|
|
new_forward,
|
|
stage_manager=stage_manager,
|
|
shard_config=self.shard_config,
|
|
)
|
|
}
|
|
else:
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.h))
|
|
stage_index = stage_manager.get_stage_index(layers_per_stage)
|
|
method_replacement = {
|
|
"forward": partial(
|
|
new_forward,
|
|
stage_manager=stage_manager,
|
|
stage_index=stage_index,
|
|
shard_config=self.shard_config,
|
|
)
|
|
}
|
|
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)
|
|
|
|
|
|
# GPT2Model
|
|
class GPT2ModelPolicy(GPT2Policy):
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
|
|
|
|
policy = super().module_policy()
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(
|
|
model_cls=GPT2Model,
|
|
new_forward=GPT2PipelineForwards.gpt2_model_forward,
|
|
policy=policy,
|
|
)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
return super().get_held_layers()
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in GPT2Model."""
|
|
return []
|
|
|
|
|
|
# GPT2LMHeadModel
|
|
class GPT2LMHeadModelPolicy(GPT2Policy):
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
|
|
|
module_policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
addon_module = {
|
|
GPT2LMHeadModel: ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head",
|
|
target_module=col_nn.VocabParallelLMHead1D,
|
|
kwargs={
|
|
"gather_output": False,
|
|
"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by,
|
|
},
|
|
)
|
|
],
|
|
)
|
|
}
|
|
if self.shard_config.parallel_output:
|
|
addon_module[GPT2LMHeadModel].method_replacement = {
|
|
"forward": get_lm_forward_with_dist_cross_entropy(self.shard_config)
|
|
}
|
|
else:
|
|
addon_module = {
|
|
GPT2LMHeadModel: ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head",
|
|
target_module=col_nn.PaddingLMHead,
|
|
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
|
|
)
|
|
]
|
|
)
|
|
}
|
|
module_policy.update(addon_module)
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(
|
|
model_cls=GPT2LMHeadModel,
|
|
new_forward=GPT2PipelineForwards.gpt2_lmhead_model_forward,
|
|
policy=module_policy,
|
|
)
|
|
return module_policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage(ignore_chunk=True):
|
|
held_layers.append(self.model.lm_head)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""The weights of wte and lm_head are shared."""
|
|
module = self.model
|
|
stage_manager = self.pipeline_stage_manager
|
|
if stage_manager is not None:
|
|
if stage_manager.num_stages > 1 and id(module.transformer.wte.weight) == id(module.lm_head.weight):
|
|
first_stage, last_stage = 0, stage_manager.num_stages - 1
|
|
return [
|
|
{
|
|
first_stage: module.transformer.wte.weight,
|
|
last_stage: module.lm_head.weight,
|
|
}
|
|
]
|
|
return []
|
|
|
|
|
|
# GPT2DoubleHeadsModel
|
|
class GPT2DoubleHeadsModelPolicy(GPT2Policy):
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2DoubleHeadsModel
|
|
|
|
module_policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
addon_module = {
|
|
GPT2DoubleHeadsModel: ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head",
|
|
target_module=col_nn.VocabParallelLMHead1D,
|
|
kwargs={
|
|
"gather_output": True,
|
|
"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by,
|
|
},
|
|
)
|
|
]
|
|
)
|
|
}
|
|
else:
|
|
addon_module = {
|
|
GPT2DoubleHeadsModel: ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head",
|
|
target_module=col_nn.PaddingLMHead,
|
|
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
|
|
)
|
|
]
|
|
)
|
|
}
|
|
module_policy.update(addon_module)
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(
|
|
model_cls=GPT2DoubleHeadsModel,
|
|
new_forward=GPT2PipelineForwards.gpt2_double_heads_model_forward,
|
|
policy=module_policy,
|
|
)
|
|
|
|
return module_policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
multiple_choice_head = self.model.multiple_choice_head
|
|
held_layers.append(self.model.lm_head)
|
|
held_layers.append(multiple_choice_head.summary)
|
|
held_layers.append(multiple_choice_head.activation)
|
|
held_layers.append(multiple_choice_head.first_dropout)
|
|
held_layers.append(multiple_choice_head.last_dropout)
|
|
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""The weights of wte and lm_head are shared."""
|
|
module = self.model
|
|
stage_manager = self.pipeline_stage_manager
|
|
if stage_manager is not None:
|
|
if stage_manager.num_stages > 1 and id(module.transformer.wte.weight) == id(module.lm_head.weight):
|
|
first_stage, last_stage = 0, stage_manager.num_stages - 1
|
|
return [
|
|
{
|
|
first_stage: module.transformer.wte.weight,
|
|
last_stage: module.lm_head.weight,
|
|
}
|
|
]
|
|
return []
|
|
|
|
|
|
# GPT2ForQuestionAnswering
|
|
class GPT2ForQuestionAnsweringPolicy(GPT2Policy):
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2ForQuestionAnswering
|
|
|
|
module_policy = super().module_policy()
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(
|
|
model_cls=GPT2ForQuestionAnswering,
|
|
new_forward=GPT2PipelineForwards.gpt2_for_question_answering_forward,
|
|
policy=module_policy,
|
|
)
|
|
|
|
return module_policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.qa_outputs)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared_params in gpt2 for QA."""
|
|
return []
|
|
|
|
|
|
# GPT2ForTokenClassification
|
|
class GPT2ForTokenClassificationPolicy(GPT2Policy):
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2ForTokenClassification
|
|
|
|
module_policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
addon_module = {
|
|
GPT2ForTokenClassification: ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
)
|
|
]
|
|
)
|
|
}
|
|
module_policy.update(addon_module)
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(
|
|
model_cls=GPT2ForTokenClassification,
|
|
new_forward=GPT2PipelineForwards.gpt2_for_token_classification_forward,
|
|
policy=module_policy,
|
|
)
|
|
return module_policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.dropout)
|
|
held_layers.append(self.model.classifier)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in GPT2ForTokenClassification."""
|
|
return []
|
|
|
|
|
|
# GPT2ForSequenceClassification
|
|
class GPT2ForSequenceClassificationPolicy(GPT2Policy):
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2ForSequenceClassification
|
|
|
|
module_policy = super().module_policy()
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(
|
|
model_cls=GPT2ForSequenceClassification,
|
|
new_forward=GPT2PipelineForwards.gpt2_for_sequence_classification_forward,
|
|
policy=module_policy,
|
|
)
|
|
return module_policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.score)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in GPT2ForTokenClassification."""
|
|
return []
|