mirror of https://github.com/hpcaitech/ColossalAI
68 lines
2.5 KiB
Python
68 lines
2.5 KiB
Python
import math
|
|
import torch
|
|
import torch.distributed as dist
|
|
import pytest
|
|
import colossalai
|
|
import torch.multiprocessing as mp
|
|
from torch.distributed.distributed_c10d import _get_default_group
|
|
from colossalai.testing import rerun_if_address_is_in_use
|
|
from colossalai.utils import free_port
|
|
from colossalai.tensor import DistSpecManager, distspec
|
|
from functools import partial
|
|
|
|
|
|
def run():
|
|
group = _get_default_group()
|
|
rank = dist.get_rank()
|
|
size = dist.get_world_size()
|
|
depth = int(math.sqrt(size))
|
|
assert depth == math.sqrt(size)
|
|
x = torch.rand(8, 8).cuda()
|
|
old_dist_spec = distspec.replicate()
|
|
row_spec = distspec.shard(group, [0], [size])
|
|
col_spec = distspec.shard(group, [-1], [size])
|
|
mat_spec = distspec.shard(group, [0, 1], [depth, depth])
|
|
row_shard = DistSpecManager._shard_as(x, old_dist_spec, row_spec)
|
|
assert torch.equal(x.chunk(size, 0)[rank], row_shard)
|
|
assert torch.equal(x, DistSpecManager._gather(row_shard, row_spec))
|
|
col_shard = DistSpecManager._all_to_all(row_shard, row_spec, col_spec)
|
|
assert torch.equal(x.chunk(size, -1)[rank], col_shard)
|
|
assert torch.equal(x, DistSpecManager._gather(col_shard, col_spec))
|
|
mat_shard = DistSpecManager._shard_as(x, old_dist_spec, mat_spec)
|
|
assert torch.equal(x.chunk(depth, 0)[rank // depth].chunk(depth, 1)[rank % depth], mat_shard)
|
|
assert torch.equal(x, DistSpecManager._gather(mat_shard, mat_spec))
|
|
|
|
|
|
def check_mem():
|
|
group = _get_default_group()
|
|
size = dist.get_world_size()
|
|
assert torch.cuda.memory_allocated() == 0
|
|
x = torch.rand(32, 32).cuda()
|
|
orig_mem = x.numel() * x.element_size()
|
|
assert torch.cuda.memory_allocated() == orig_mem
|
|
old_dist_spec = distspec.replicate()
|
|
row_spec = distspec.shard(group, [0], [size])
|
|
x.data = DistSpecManager._shard_as(x, old_dist_spec, row_spec)
|
|
assert x.size(0) == 32 // size and x.size(1) == 32
|
|
assert torch.cuda.memory_allocated() == orig_mem // size
|
|
x.data = DistSpecManager._gather(x, row_spec)
|
|
assert torch.cuda.memory_allocated() == orig_mem
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
check_mem()
|
|
run()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@pytest.mark.parametrize('world_size', [1, 4])
|
|
@rerun_if_address_is_in_use()
|
|
def test_dist_spec_mgr(world_size):
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_dist_spec_mgr(4)
|