ColossalAI/applications/Chat/coati/trainer/strategies/base.py

130 lines
4.2 KiB
Python

from abc import ABC, abstractmethod
from contextlib import nullcontext
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from coati.replay_buffer import ReplayBuffer
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from .sampler import DistributedSampler
ModelOptimPair = Tuple[nn.Module, Optimizer]
ModelOrModelOptimPair = Union[nn.Module, ModelOptimPair]
class Strategy(ABC):
"""
Base class for training strategies.
"""
def __init__(self) -> None:
super().__init__()
self.setup_distributed()
@abstractmethod
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: Optimizer, **kwargs) -> None:
pass
@abstractmethod
def optimizer_step(self, optimizer: Optimizer, **kwargs) -> None:
pass
@abstractmethod
def setup_distributed(self) -> None:
pass
@abstractmethod
def setup_model(self, model: nn.Module) -> nn.Module:
pass
@abstractmethod
def setup_optimizer(self, optimizer: Optimizer, model: nn.Module) -> Optimizer:
pass
@abstractmethod
def setup_dataloader(self, replay_buffer: ReplayBuffer, pin_memory: bool = False) -> DataLoader:
pass
def model_init_context(self):
return nullcontext()
def prepare(
self, *models_or_model_optim_pairs: ModelOrModelOptimPair
) -> Union[List[ModelOrModelOptimPair], ModelOrModelOptimPair]:
"""Prepare models or model-optimizer-pairs based on each strategy.
Example::
>>> # when fine-tuning actor and critic
>>> (actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare((actor, actor_optim), (critic, critic_optim), reward_model, initial_model)
>>> # or when training reward model
>>> (reward_model, reward_model_optim) = strategy.prepare((reward_model, reward_model_optim))
>>> # or just inference
>>> actor, critic = strategy.prepare(actor, critic)
Returns:
Union[List[ModelOrModelOptimPair], ModelOrModelOptimPair]: Models or model-optimizer-pairs in the original order.
"""
rets = []
for arg in models_or_model_optim_pairs:
if isinstance(arg, tuple):
assert len(arg) == 2, f'Expect (model, optimizer) pair, got a tuple with size "{len(arg)}"'
model, optimizer = arg
model = self.setup_model(model)
optimizer = self.setup_optimizer(optimizer, model)
rets.append((model, optimizer))
elif isinstance(arg, nn.Module):
rets.append(self.setup_model(model))
else:
raise RuntimeError(f'Expect model or (model, optimizer) pair, got {type(arg)}')
if len(rets) == 1:
return rets[0]
return rets
@staticmethod
def unwrap_model(model: nn.Module) -> nn.Module:
"""Get the unwrapped model from a wrapped model made by Strategy.prepare.
Args:
model (nn.Module): the model to unwrap
Returns:
nn.Module: the original model
"""
return model
@abstractmethod
def save_model(self, model: nn.Module, path: str, only_rank0: bool = True) -> None:
pass
@abstractmethod
def load_model(self, model: nn.Module, path: str, map_location: Any = None, strict: bool = True) -> None:
pass
@abstractmethod
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
pass
@abstractmethod
def load_optimizer(self, optimizer: Optimizer, path: str, map_location: Any = None) -> None:
pass
def setup_sampler(self, dataset) -> DistributedSampler:
return DistributedSampler(dataset, 1, 0)
@abstractmethod
def save_pretrained(self,
model: nn.Module,
path: str,
only_rank0: bool = True,
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
pass
@abstractmethod
def get_model_state_dict_shard(self, model: nn.Module, **config):
pass