ColossalAI/colossalai/fx/profiler/experimental/profiler_module/rnn.py

76 lines
3.0 KiB
Python

from functools import reduce
import operator
import torch
from ..registry import meta_profiler_module
from typing import Optional, Tuple, Union
def _rnn_flops(flops: int, macs: int, module: torch.nn.RNNBase, w_ih: torch.Tensor,
w_hh: torch.Tensor) -> Tuple[int, int]:
# copied from https://github.com/sovrasov/flops-counter.pytorch/blob/master/ptflops/pytorch_ops.py
# matrix matrix mult ih state and internal state
macs += reduce(operator.mul, w_ih.shape)
flops += 2 * reduce(operator.mul, w_ih.shape)
# matrix matrix mult hh state and internal state
macs += reduce(operator.mul, w_hh.shape)
flops += 2 * reduce(operator.mul, w_hh.shape)
if isinstance(module, (torch.nn.RNN, torch.nn.RNNCell)):
# add both operations
flops += module.hidden_size
elif isinstance(module, (torch.nn.GRU, torch.nn.GRUCell)):
# hadamard of r
flops += module.hidden_size
# adding operations from both states
flops += module.hidden_size * 3
# last two hadamard product and add
flops += module.hidden_size * 3
elif isinstance(module, (torch.nn.LSTM, torch.nn.LSTMCell)):
# adding operations from both states
flops += module.hidden_size * 4
# two hadamard product and add for C state
flops += module.hidden_size * 3
# final hadamard
flops += module.hidden_size * 3
return flops, macs
@meta_profiler_module.register(torch.nn.LSTM)
@meta_profiler_module.register(torch.nn.GRU)
@meta_profiler_module.register(torch.nn.RNN)
def torch_nn_rnn(self: torch.nn.RNNBase, input: torch.Tensor, hx: Optional[torch.Tensor] = None) -> Tuple[int, int]:
flops = 0
macs = 0
for i in range(self.num_layers):
w_ih = self.__getattr__('weight_ih_l' + str(i))
w_hh = self.__getattr__('weight_hh_l' + str(i))
flops, macs = _rnn_flops(flops, macs, self, w_ih, w_hh)
if self.bias:
b_ih = self.__getattr__('bias_ih_l' + str(i))
b_hh = self.__getattr__('bias_hh_l' + str(i))
flops += reduce(operator.mul, b_ih) + reduce(operator.mul, b_hh)
flops *= reduce(operator.mul, input.shape[:2])
macs *= reduce(operator.mul, input.shape[:2])
if self.bidirectional:
flops *= 2
macs *= 2
return flops, macs
@meta_profiler_module.register(torch.nn.LSTMCell)
@meta_profiler_module.register(torch.nn.GRUCell)
@meta_profiler_module.register(torch.nn.RNNCell)
def torch_nn_rnn(self: torch.nn.RNNCellBase, input: torch.Tensor, hx: Optional[torch.Tensor] = None) -> Tuple[int, int]:
flops = 0
macs = 0
w_ih = self.__getattr__('weight_ih_l')
w_hh = self.__getattr__('weight_hh_l')
flops, macs = _rnn_flops(flops, macs, self, w_ih, w_hh)
if self.bias:
b_ih = self.__getattr__('bias_ih_l')
b_hh = self.__getattr__('bias_hh_l')
flops += reduce(operator.mul, b_ih) + reduce(operator.mul, b_hh)
flops *= input.shape[0]
macs *= input.shape[0]
return flops, macs