ColossalAI/colossalai/fx/profiler/experimental/profiler.py

173 lines
6.9 KiB
Python

from dataclasses import dataclass
from typing import Any, Callable, Dict, Tuple
import torch
from torch.fx.node import Argument, Target
from ..._compatibility import compatibility
from ..memory_utils import activation_size
from .constants import INPLACE_METHOD, INPLACE_OPS, NON_INPLACE_METHOD
from .registry import meta_profiler_function, meta_profiler_module
__all__ = ['profile_function', 'profile_module', 'profile_method']
# this is for compatibility use
@compatibility(is_backward_compatible=True)
@dataclass
class GraphInfo:
"""
GraphInfo is a dataclass for MetaInfo, which measures
the execution memory cost and FLOPs with `MetaTensor`.
The dataflow analysis is conducted on a single node of the FX graph.
============================================================================
-------------------------------
| Node |
[fwd_in] are ---> | [fwd_in] [bwd_out] | <----- [bwd_out] is marks the memory for `grad_out`
placeholders saved for | | \__________ | |
backward. | | \ | |
| [fwd_tmp] ------> [bwd_tmp] | <-----
| | \_________ | | [bwd_tmp] marks the peak memory
| / \ \ | | in backward pass.
[x] is not counted ---> | [x] [fwd_tmp] -> [bwd_tmp] | <-----
in [fwd_tmp] because | | | \_____ | |
it is not saved for | | | \ | |
backward. -------------------------------
============================================================================
Attributes:
fwd_flop (int): The forward FLOPs of a certain node
bwd_flop (int): The backward FLOPs of a certain node.
fwd_mem_in (int): See the above illustration.
fwd_mem_tmp (int): See the above illustration.
bwd_mem_tmp (int): See the above illustration.
bwd_mem_out (int): See the above illustration.
"""
fwd_flop: int = 0
bwd_flop: int = 0
fwd_mem_in: int = 0
fwd_mem_tmp: int = 0
bwd_mem_tmp: int = 0
bwd_mem_out: int = 0
CALL_FUNCTION_MSG = \
"""
Colossal-AI hasn't supported profiling for {}, you might manually patch it with the following code.\n
from colossalai.fx.profiler.experimental import meta_profiler_function
@meta_profiler_function.register(YOUR_FUNCTION)
def profile_YOUR_FUNCTION(input: torch.Tensor, *args) -> Tuple[int, int]:
flops = ...
macs = ...
return flops, macs
"""
CALL_METHOD_MSG = 'Please check if {} is an inplace method. If so, add target to INPLACE_METHOD={}. Otherwise, add target to NON_INPLACE_METHOD={}'
CALL_MODULE_MSG = \
"""
Colossal-AI hasn't supported profiling for {}, you might manually patch it with the following code.\n
from colossalai.fx.profiler.experimental import meta_profiler_module
@meta_profiler_module.register(YOUR_MODULE)
def profile_YOUR_MODULE(self: torch.nn.Module, input: torch.Tensor) -> Tuple[int, int]:
flops = ...
macs = ...
return flops, macs
"""
@compatibility(is_backward_compatible=True)
def profile_function(target: 'Target') -> Callable:
"""
Wrap a `call_function` node or `torch.nn.functional` in order to
record the memory cost and FLOPs of the execution.
Unfortunately, backward memory cost and FLOPs are estimated results.
Warnings:
You may only use tensors with `device=meta` for this wrapped function.
Only original `torch.nn.functional` are available.
Examples:
>>> input = torch.rand(100, 100, 100, 100, device='meta')
>>> func = torch.nn.functional.relu
>>> output, (fwd_flop, bwd_flop), (fwd_tmp, fwd_out, bwd_tmp, bwd_out) = profile_function(func)(input, inplace=False)
"""
def f(*args: Tuple[Argument, ...], **kwargs: Dict[str, Any]) -> Any:
assert meta_profiler_function.has(target) or meta_profiler_function.has(
target.__name__), CALL_FUNCTION_MSG.format(target)
fwd_tmp = 0
fwd_out = 0
out = func(*args, **kwargs)
if target not in INPLACE_OPS and not kwargs.get('inplace', False):
fwd_out = activation_size(out)
if meta_profiler_function.has(target):
profiler = meta_profiler_function.get(target)
else:
profiler = meta_profiler_function.get(target.__name__)
fwd_flop, _ = profiler(*args, **kwargs)
return out, GraphInfo(fwd_flop, fwd_flop * 2, fwd_tmp, fwd_out, fwd_tmp + fwd_out, 0)
f.__name__ = target.__name__
func = target
return f
@compatibility(is_backward_compatible=True)
def profile_method(target: 'Target') -> Callable:
"""
Wrap a `call_method` node
record the memory cost and FLOPs of the execution.
Warnings:
This is not fully implemented and you may follow the error message to debug.
"""
def f(*args: Tuple[Argument, ...], **kwargs: Dict[str, Any]) -> Any:
# args[0] is the `self` object for this method call
self_obj, *args_tail = args
# execute the method and return the result
assert isinstance(target, str), f'{target} instance is not str.'
out = getattr(self_obj, target)(*args_tail, **kwargs)
assert target in INPLACE_METHOD + NON_INPLACE_METHOD, CALL_METHOD_MSG.format(
target, INPLACE_METHOD, NON_INPLACE_METHOD)
# call_method has no parameters and are MOSTLY(?) inplace, and has no FLOPs or MACs.
fwd_tmp = 0 if target in INPLACE_METHOD else activation_size(out)
fwd_out = 0 if target not in INPLACE_METHOD else activation_size(out)
return out, GraphInfo(0, 0, fwd_tmp, fwd_out, fwd_tmp + fwd_out, 0)
return f
@compatibility(is_backward_compatible=True)
def profile_module(module: torch.nn.Module) -> Callable:
"""
Wrap a `call_module` node or `torch.nn` in order to
record the memory cost and FLOPs of the execution.
Warnings:
You may only use tensors with `device=meta` for this wrapped function.
Only original `torch.nn` are available.
Example:
>>> input = torch.rand(4, 3, 224, 224, device='meta')
>>> mod = torch.nn.Conv2d(3, 128, 3)
>>> output, (fwd_flop, bwd_flop), (fwd_tmp, fwd_out, bwd_tmp, bwd_out) = profile_module(mod)(input)
"""
def f(*args: Tuple[Argument, ...], **kwargs: Dict[str, Any]) -> Any:
assert meta_profiler_module.has(type(module)), CALL_MODULE_MSG.format(type(module))
fwd_tmp = 0
fwd_out = 0
out = func(*args, **kwargs)
if getattr(module, 'inplace', False):
fwd_out = activation_size(out)
profiler = meta_profiler_module.get(type(module))
fwd_flop, _ = profiler(module, *args, **kwargs)
return out, GraphInfo(fwd_flop, fwd_flop * 2, fwd_tmp, fwd_out, fwd_tmp + fwd_out, 0)
f.__name__ = module.__class__.__name__
func = module.forward
return f