You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/chunk_codegen_run.py

101 lines
3.8 KiB

import copy
import torch
import torch.nn.functional as F
import pytest
import torch.fx
import torch.multiprocessing as mp
from torch.fx import GraphModule
from colossalai.fx import ColoTracer
import colossalai
from colossalai.utils import free_port
from colossalai.core import global_context as gpc
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp, TensorMetadata
from colossalai.fx.profiler import MetaTensor
from evoformer.evoformer import evoformer_base
from chunk_codegen import ChunkCodeGen
with_codegen = True
def _is_all_gradient_close(m: torch.nn.Module, gm: GraphModule) -> bool:
for m_p, gm_p in zip(m.parameters(), gm.parameters()):
if m_p.grad is not None and not torch.allclose(m_p.grad, gm_p.grad):
return False
return True
def _is_all_param_close(m: torch.nn.Module, gm: GraphModule) -> bool:
for m_p, gm_p in zip(m.parameters(), gm.parameters()):
if m_p.grad is not None and not torch.allclose(m_p.data, gm_p.data):
return False
return True
def _test_fwd_and_bwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair):
now_mem = torch.cuda.memory_allocated() / 1024**2
with torch.no_grad():
node0 = node.clone()
pair0 = pair.clone()
node1, pair1 = gm(node0, pair0)
new_now_mem = torch.cuda.memory_allocated() / 1024**2
new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
print("now:%.2f max:%.2f" %(new_now_mem - now_mem, new_max_mem - now_mem))
# test forward
with torch.no_grad():
non_fx_out = model(node, pair)
fx_out = gm(node, pair)
assert torch.allclose(non_fx_out[0], fx_out[0], atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(torch.abs(non_fx_out[0] - fx_out[0]))
assert torch.allclose(non_fx_out[1], fx_out[1], atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(torch.abs(non_fx_out[1] - fx_out[1]))
# test barckward
# loss0 = non_fx_out[0].sum() + non_fx_out[1].sum()
# loss0.backward()
# loss1 = fx_out[0].sum() + fx_out[1].sum()
# loss1.backward()
# assert _is_all_param_close(model, gm)
# assert _is_all_gradient_close(model, gm), "gm doesn't have the same gradient as original one"
def _run_offload_codegen(rank):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl')
# build model and input
model = evoformer_base().cuda()
node = torch.randn(1, 100, 300, 256).cuda()
pair = torch.randn(1, 300, 300, 128).cuda()
# trace the module and replace codegen
graph = ColoTracer().trace(model, meta_args={'node': node.to(torch.device('meta')), 'pair': pair.to(torch.device('meta'))})
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
interp = MetaInfoProp(gm_prop)
interp.propagate(MetaTensor(node, fake_device='cuda:0'), MetaTensor(pair, fake_device='cuda:0'))
# now run it twice to get meta info in graph module, not necessary
gm = torch.fx.GraphModule(model, graph)
interp = MetaInfoProp(gm)
interp.propagate(MetaTensor(node, fake_device='cuda:0'), MetaTensor(pair, fake_device='cuda:0'))
codegen = ChunkCodeGen(gm_prop)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph)
gm.recompile()
# assert we have all the components
code = graph.python_code("self").src
print(code)
_test_fwd_and_bwd(model, gm, node, pair)
gpc.destroy()
@pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0')
def test_act_ckpt_codegen():
mp.spawn(_run_offload_codegen, nprocs=1)
if __name__ == "__main__":
_run_offload_codegen(0)