ColossalAI/colossalai/fx/passes/split_module.py

278 lines
12 KiB
Python

import torch
from torch.fx.graph_module import GraphModule
from typing import Callable, List, Dict, Any, Optional
from torch.fx._compatibility import compatibility
import inspect
@compatibility(is_backward_compatible=True)
class Partition:
"""
Adapted from https://github.com/pytorch/pytorch/blob/master/torch/fx/passes/split_module.py
"""
def __init__(self, name: str):
self.name: str = name
self.node_names: List[str] = []
self.inputs: Dict[str, None] = {}
self.outputs: Dict[str, None] = {}
self.partitions_dependent_on: Dict[str, None] = {}
self.partition_dependents: Dict[str, None] = {}
self.graph: torch.fx.graph.Graph = torch.fx.graph.Graph()
self.environment: Dict[torch.fx.node.Node, torch.fx.node.Node] = {}
self.targets: Dict[str, Any] = {}
def __repr__(self) -> str:
return f"name: {self.name},\n" \
f" nodes: {self.node_names},\n" \
f" inputs: {self.inputs},\n" \
f" outputs: {self.outputs},\n" \
f" partitions depenent on: {self.partitions_dependent_on},\n" \
f" parition dependents: {self.partition_dependents}"
# Creates subgraphs out of main graph
@compatibility(is_backward_compatible=True)
def split_module(
m: GraphModule,
root_m: torch.nn.Module,
split_callback: Callable[[torch.fx.node.Node], int],
):
"""
Adapted from https://github.com/pytorch/pytorch/blob/master/torch/fx/passes/split_module.py
Creates subgraphs out of main graph
Args:
m (GraphModule): Graph module to split
root_m (torch.nn.Module): root nn module. Not currently used. Included
because the root nn module is usually transformed via
torch.fx._symbolic_trace.symbolic_trace (see example below)
split_callback (Callable[[torch.fx.node.Node], int]): Callable function
that maps a given Node instance to a numeric partition identifier.
split_module will use this function as the policy for which operations
appear in which partitions in the output Module.
Returns:
GraphModule: the module after split.
Example:
This is a sample setup:
import torch
from torch.fx.symbolic_trace import symbolic_trace
from torch.fx.graph_module import GraphModule
from torch.fx.node import Node
from colossalai.fx.passes.split_module import split_module
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.param = torch.nn.Parameter(torch.rand(3, 4))
self.linear = torch.nn.Linear(4, 5)
def forward(self, x, y):
z = self.linear(x + self.param).clamp(min=0.0, max=1.0)
w = self.linear(y).clamp(min=0.0, max=1.0)
return z + w
# symbolically trace model
my_module = MyModule()
my_module_traced = symbolic_trace(my_module)
# random mod partitioning
partition_counter = 0
NPARTITIONS = 3
def mod_partition(node: Node):
global partition_counter
partition = partition_counter % NPARTITIONS
partition_counter = (partition_counter + 1) % NPARTITIONS
return partition
# split module in module with submodules
module_with_submodules = split_module(
my_module_traced, my_module, mod_partition
)
Output looks like this. Original graph is broken into partitions
> print(module_with_submodules)
GraphModule(
(submod_0): GraphModule(
(linear): Linear(in_features=4, out_features=5, bias=True)
)
(submod_1): GraphModule(
(linear): Linear(in_features=4, out_features=5, bias=True)
)
(submod_2): GraphModule()
)
def forward(self, x, y):
param = self.param
submod_0 = self.submod_0(x, param, y); x = param = y = None
getitem = submod_0[0]
getitem_1 = submod_0[1]; submod_0 = None
submod_1 = self.submod_1(getitem, getitem_1); getitem = getitem_1 = None
getitem_2 = submod_1[0]
getitem_3 = submod_1[1]; submod_1 = None
submod_2 = self.submod_2(getitem_2, getitem_3); getitem_2 = getitem_3 = None
return submod_2
Output of split module is the same as output of input traced module.
This is an example within a test setting:
> orig_out = my_module_traced(x, y)
> submodules_out = module_with_submodules(x, y)
> self.assertEqual(orig_out, submodules_out)
True
"""
partitions: Dict[str, Partition] = {}
orig_nodes: Dict[str, torch.fx.node.Node] = {}
def record_cross_partition_use(def_node: torch.fx.node.Node,
use_node: Optional[torch.fx.node.Node]): # noqa: B950
def_partition_name = getattr(def_node, '_fx_partition', None)
use_partition_name = getattr(use_node, '_fx_partition', None)
if def_partition_name != use_partition_name:
if def_partition_name is not None:
def_partition = partitions[def_partition_name]
def_partition.outputs.setdefault(def_node.name)
if use_partition_name is not None:
def_partition.partition_dependents.setdefault(use_partition_name)
if use_partition_name is not None:
use_partition = partitions[use_partition_name]
use_partition.inputs.setdefault(def_node.name)
if def_partition_name is not None:
use_partition.partitions_dependent_on.setdefault(def_partition_name)
# split nodes into parititons
for node in m.graph.nodes:
orig_nodes[node.name] = node
if node.op in ["placeholder"]:
continue
if node.op == 'output':
torch.fx.graph.map_arg(node.args[0], lambda n: record_cross_partition_use(n, None))
continue
partition_name = str(split_callback(node))
# add node to partitions
partition = partitions.get(partition_name)
if partition is None:
partitions[partition_name] = partition = Partition(partition_name)
partition.node_names.append(node.name)
node._fx_partition = partition_name
torch.fx.graph.map_arg(node.args, lambda def_node: record_cross_partition_use(def_node, node))
torch.fx.graph.map_arg(node.kwargs, lambda def_node: record_cross_partition_use(def_node, node)) # noqa: B950
# find partitions with no dependencies
root_partitions: List[str] = []
for partition_name, partition in partitions.items():
if not len(partition.partitions_dependent_on):
root_partitions.append(partition_name)
# check partitions for circular dependencies and create topological partition ordering
sorted_partitions: List[str] = []
while root_partitions:
root_partition = root_partitions.pop()
sorted_partitions.append(root_partition)
for dependent in partitions[root_partition].partition_dependents:
partitions[dependent].partitions_dependent_on.pop(root_partition)
if not partitions[dependent].partitions_dependent_on:
root_partitions.append(dependent)
if len(sorted_partitions) != len(partitions):
raise RuntimeError("cycle exists between partitions!")
# add placeholders to parititons
for partition_name in sorted_partitions:
partition = partitions[partition_name]
for input in partition.inputs:
placeholder = partition.graph.placeholder(input)
placeholder.meta = orig_nodes[input].meta.copy()
partition.environment[orig_nodes[input]] = placeholder
# Transform nodes and collect targets for partition's submodule
for node in m.graph.nodes:
if hasattr(node, '_fx_partition'):
partition = partitions[node._fx_partition]
# swap out old graph nodes in kw/args with references to new nodes in this submodule
environment = partition.environment
gathered_args = torch.fx.graph.map_arg(node.args, lambda n: environment[n])
gathered_kwargs = torch.fx.graph.map_arg(node.kwargs, lambda n: environment[n])
if node.op not in ['call_module', 'get_attr']:
target = node.target
else:
target_atoms = node.target.split('.')
target_attr = m
for atom in target_atoms:
if not hasattr(target_attr, atom):
raise RuntimeError(f'Operator target {node.target} not found!')
target_attr = getattr(target_attr, atom)
# target = target_atoms[-1]
target = '_'.join(target_atoms)
partition.targets[target] = target_attr
assert isinstance(gathered_args, tuple)
assert isinstance(gathered_kwargs, dict)
new_node = partition.graph.create_node(op=node.op,
target=target,
args=gathered_args,
kwargs=gathered_kwargs)
new_node.meta = node.meta.copy()
partition.environment[node] = new_node
# Set up values to construct base module
base_mod_env: Dict[str, torch.fx.node.Node] = {}
base_mod_graph: torch.fx.graph.Graph = torch.fx.graph.Graph()
base_mod_attrs: Dict[str, torch.fx.graph_module.GraphModule] = {}
for node in m.graph.nodes:
if node.op == 'placeholder':
default_value = node.args[0] if len(node.args) > 0 else inspect.Signature.empty
base_mod_env[node.name] = base_mod_graph.placeholder(node.name,
type_expr=node.type,
default_value=default_value)
base_mod_env[node.name].meta = node.meta.copy()
# Do some things iterating over the partitions in topological order again:
# 1) Finish off submodule Graphs by setting corresponding outputs
# 2) Construct GraphModules for each submodule
# 3) Construct the base graph by emitting calls to those submodules in
# topological order
for partition_name in sorted_partitions:
partition = partitions[partition_name]
# Set correct output values
output_vals = tuple(partition.environment[orig_nodes[name]] for name in partition.outputs)
output_vals = output_vals[0] if len(output_vals) == 1 else output_vals # type: ignore[assignment]
partition.graph.output(output_vals)
# Construct GraphModule for this partition
submod_name = f'submod_{partition_name}'
base_mod_attrs[submod_name] = torch.fx.graph_module.GraphModule(partition.targets,
partition.graph) # noqa: B950
# Emit call in base graph to this submodule
output_val = base_mod_graph.call_module(submod_name, tuple(base_mod_env[name] for name in partition.inputs))
if len(partition.outputs) > 1:
# Unpack multiple return values from submodule
output_val_proxy = torch.fx.proxy.Proxy(output_val)
for i, output_name in enumerate(partition.outputs):
base_mod_env[output_name] = output_val_proxy[i].node # type: ignore[index]
else:
if not partition.outputs:
continue
base_mod_env[list(partition.outputs)[0]] = output_val
for node in m.graph.nodes:
if node.op == 'output':
base_mod_graph.output(torch.fx.graph.map_arg(node.args[0], lambda n: base_mod_env[n.name])) # noqa: B950
return torch.fx.graph_module.GraphModule(base_mod_attrs, base_mod_graph)