ColossalAI/applications/ColossalEval/colossal_eval/utils/utilities.py

63 lines
1.6 KiB
Python

import io
import json
import os
import torch.distributed as dist
def is_rank_0() -> bool:
return not dist.is_initialized() or dist.get_rank() == 0
def _make_w_io_base(f, mode: str):
if not isinstance(f, io.IOBase):
f_dirname = os.path.dirname(f)
if f_dirname != "":
os.makedirs(f_dirname, exist_ok=True)
f = open(f, mode=mode, encoding="utf-8")
return f
def _make_r_io_base(f, mode: str):
if not isinstance(f, io.IOBase):
f = open(f, mode=mode, encoding="utf-8")
return f
def jdump(obj, f, mode="w", indent=4, default=str):
"""
Dump a str or dictionary to a file in json format.
Args:
obj: An object to be written.
f: A string path to the location on disk.
mode: Mode for opening the file.
indent: Indent for storing json dictionaries.
default: A function to handle non-serializable entries; defaults to `str`.
"""
f = _make_w_io_base(f, mode)
if isinstance(obj, (dict, list)):
json.dump(obj, f, indent=indent, default=default, ensure_ascii=False)
elif isinstance(obj, str):
f.write(obj)
else:
raise ValueError(f"Unexpected type: {type(obj)}")
f.close()
def jload(f, mode="r"):
"""Load a .json file into a dictionary."""
f = _make_r_io_base(f, mode)
jdict = json.load(f)
f.close()
return jdict
def get_json_list(file_path):
with open(file_path, "r") as f:
json_list = []
for line in f:
json_list.append(json.loads(line if line != "null" else line))
return json_list