ColossalAI/applications/ColossalEval/colossal_eval/dataset/mmlu.py

76 lines
2.8 KiB
Python

import copy
import csv
import os
from typing import Dict, List
from colossalai.logging import DistributedLogger
from .base import BaseDataset
default_inference_kwargs = {
"calculate_loss": True,
"all_classes": ["A", "B", "C", "D"],
"language": "English",
"pretrain": False,
"max_new_tokens": 32,
}
def get_few_shot_data(data: List[Dict], subject):
few_shot_data = [f"The following are multiple choice questions (with answers) about {subject}."]
for i in data:
few_shot_data.append(i["input"] + i["target"])
return few_shot_data
class MMLUDataset(BaseDataset):
"""
Dataset class for MMLU dataset.
Data source: https://github.com/hendrycks/test
This dataset class will convert the original dataset into the inference dataset.
"""
@staticmethod
def load(
path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool
) -> List[Dict]:
dataset = {"dev": {}, "test": {}}
for split in ["dev", "test"]:
files = os.listdir(os.path.join(path, split))
files.sort()
for file in files:
subject = file[0 : -len(f"_{split}.csv")].split("_")
subject = " ".join([word.title() if word != "us" else "US" for word in subject])
file_dir = os.path.join(path, split, file)
dataset[split][subject] = {"data": [], "inference_kwargs": {}}
# It's been tested that each data sample in one subcategory have same inference arguments.
dataset[split][subject]["inference_kwargs"] = copy.deepcopy(default_inference_kwargs)
if split == "test" and few_shot:
dataset[split][subject]["inference_kwargs"]["few_shot_data"] = get_few_shot_data(
dataset["dev"][subject]["data"], subject
)
with open(file_dir, encoding="utf-8") as f:
reader = csv.reader(f)
for row in reader:
assert len(row) == 6
choices = f"A. {row[1]}\nB. {row[2]}\nC. {row[3]}\nD. {row[4]}"
data_sample = {
"dataset": "mmlu",
"split": split,
"category": subject,
"instruction": f"The following is a single-choice question on {subject}. Answer the question by replying A, B, C or D.",
"input": f"Question: {row[0]}\n{choices}\nAnswer: ",
"output": "",
"target": row[5],
}
dataset[split][subject]["data"].append(data_sample)
return dataset