ColossalAI/tests/test_zero/test_init_context.py

74 lines
3.0 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
from common import CONFIG
import colossalai
from colossalai.gemini.memory_tracer.utils import colo_model_mem_usage
from colossalai.logging import get_dist_logger
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.utils.cuda import get_current_device
from colossalai.utils.memory import colo_device_memory_used
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import BucketTensorShardStrategy, TensorShardStrategy
from tests.components_to_test.registry import non_distributed_component_funcs
@parameterize("init_device_type", ['cpu', 'cuda'])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def run_model_test(init_device_type, shard_strategy_class):
logger = get_dist_logger("test_zero_init")
for get_components_func in non_distributed_component_funcs:
model_builder, _, _, _, _ = get_components_func()
if init_device_type == 'cuda':
init_device = get_current_device()
elif init_device_type == 'cpu':
init_device = torch.device("cpu")
else:
continue
model_numel_tensor = torch.zeros(1, dtype=torch.int)
with ZeroInitContext(target_device=init_device,
shard_strategy=shard_strategy_class(),
shard_param=True,
model_numel_tensor=model_numel_tensor):
model = model_builder(checkpoint=True)
for param in model.parameters():
assert hasattr(param, 'colo_attr')
assert param.colo_attr.sharded_data_tensor.dtype == torch.half
assert param.colo_attr.sharded_data_tensor.is_sharded
assert param.colo_attr.data_payload.device.type == init_device.type, \
f'{param.colo_attr.data_payload.device.type} vs. {init_device.type}'
cuda_mem_use, _ = colo_model_mem_usage(model)
model_data_cuda_mem_MB = cuda_mem_use / 1e6
logger.info(f"Existing ZeRO Context.\nModel Data CUDA Memory {model_data_cuda_mem_MB} MB", ranks=[0])
sys_cuda_mem_MB = colo_device_memory_used(get_current_device()) / 1e6
logger.info(f"System CUDA Memory Usage {sys_cuda_mem_MB} MB", ranks=[0])
logger.info(f"Model Number Parameter {model_numel_tensor.numpy()[0]/1e6} M", ranks=[0])
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_model_test()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 4])
@rerun_if_address_is_in_use()
def test_zero_init_context(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_zero_init_context(4)