ColossalAI/colossalai/zero/sharded_optim/bookkeeping/bucket_store.py

45 lines
1.4 KiB
Python

from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from .base_store import BaseStore
class BucketStore(BaseStore):
def __init__(self, dp_parallel_mode):
super().__init__(dp_parallel_mode)
self._grads = dict()
self._params = dict()
self._num_elements_in_bucket = dict()
self.reset()
def num_elements_in_bucket(self, reduce_rank: int = None):
return self._num_elements_in_bucket[reduce_rank]
def add_num_elements_in_bucket(self, num_elements, reduce_rank: int = None):
self._num_elements_in_bucket[reduce_rank] += num_elements
def add_grad(self, tensor, reduce_rank: int = None):
self._grads[reduce_rank].append(tensor)
def add_param(self, tensor, reduce_rank: int = None):
self._params[reduce_rank].append(tensor)
def reset(self):
keys = [None] + list(range(self._world_size))
self._grads = {rank: [] for rank in keys}
self._params = {rank: [] for rank in keys}
self._num_elements_in_bucket = {rank: 0 for rank in keys}
def reset_by_rank(self, reduce_rank=None):
self._grads[reduce_rank] = []
self._params[reduce_rank] = []
self._num_elements_in_bucket[reduce_rank] = 0
def get_grad(self, reduce_rank: int = None):
return self._grads[reduce_rank]
def get_param(self, reduce_rank: int = None):
return self._params[reduce_rank]