ColossalAI/configs/vit/vit_2d.py

165 lines
3.6 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os
from pathlib import Path
BATCH_SIZE = 512
IMG_SIZE = 32
PATCH_SIZE = 4
DIM = 512
NUM_ATTENTION_HEADS = 2
SUMMA_DIM = 2
NUM_CLASSES = 10
DEPTH = 1
NUM_EPOCHS = 60
train_data = dict(
dataset=dict(
type='CIFAR10Dataset',
root=Path(os.environ['DATA']),
transform_pipeline=[
dict(type='Resize', size=IMG_SIZE),
dict(type='RandomCrop', size=IMG_SIZE, padding=4),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize',
mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010]),
]
),
dataloader=dict(
batch_size=BATCH_SIZE,
pin_memory=True,
shuffle=True,
)
)
test_data = dict(
dataset=dict(
type='CIFAR10Dataset',
root=Path(os.environ['DATA']),
train=False,
transform_pipeline=[
dict(type='Resize', size=IMG_SIZE),
dict(type='ToTensor'),
dict(type='Normalize',
mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010]
),
]
),
dataloader=dict(
batch_size=BATCH_SIZE,
pin_memory=True,
)
)
optimizer = dict(
type='Adam',
lr=0.001,
weight_decay=0
)
loss = dict(
type='CrossEntropyLoss2D',
)
model = dict(
type='VisionTransformerFromConfig',
tensor_splitting_cfg=dict(
type='ViTInputSplitter2D',
),
embedding_cfg=dict(
type='ViTPatchEmbedding2D',
img_size=IMG_SIZE,
patch_size=PATCH_SIZE,
embed_dim=DIM,
),
token_fusion_cfg=dict(
type='ViTTokenFuser2D',
img_size=IMG_SIZE,
patch_size=PATCH_SIZE,
embed_dim=DIM,
drop_rate=0.1
),
norm_cfg=dict(
type='LayerNorm2D',
normalized_shape=DIM,
eps=1e-6,
),
block_cfg=dict(
type='ViTBlock',
attention_cfg=dict(
type='ViTSelfAttention2D',
hidden_size=DIM,
num_attention_heads=NUM_ATTENTION_HEADS,
attention_dropout_prob=0.,
hidden_dropout_prob=0.1,
checkpoint=True
),
droppath_cfg=dict(
type='VanillaViTDropPath',
),
mlp_cfg=dict(
type='ViTMLP2D',
in_features=DIM,
dropout_prob=0.1,
mlp_ratio=4,
checkpoint=True
),
norm_cfg=dict(
type='LayerNorm2D',
normalized_shape=DIM,
eps=1e-6,
),
),
head_cfg=dict(
type='ViTHead2D',
hidden_size=DIM,
num_classes=NUM_CLASSES,
),
embed_dim=DIM,
depth=DEPTH,
drop_path_rate=0.,
)
hooks = [
dict(type='LogMetricByEpochHook'),
dict(type='Accuracy2DHook'),
dict(type='LossHook'),
dict(
type='LRSchedulerHook',
by_epoch=True,
lr_scheduler_cfg=dict(
type='LinearWarmupLR',
warmup_steps=5
)
),
dict(type='TensorboardHook', log_dir='./tb_logs'),
# dict(type='SaveCheckpointHook', interval=5, checkpoint_dir='./ckpt'),
# dict(type='LoadCheckpointHook', epoch=20, checkpoint_dir='./ckpt')
]
parallel = dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode='2d'),
)
# for fp16 training
# from colossalai.engine import AMP_TYPE
# fp16 = dict(
# mode=AMP_TYPE.PARALLEL,
# initial_scale=2 ** 8
# )
# only needed when pipeline parallel is used
# schedule = dict(
# num_microbatches=8
# )
logging = dict(
root_path='./logs'
)