mirror of https://github.com/hpcaitech/ColossalAI
183 lines
8.4 KiB
Plaintext
183 lines
8.4 KiB
Plaintext
#include <ATen/cuda/CUDAContext.h>
|
|
#include <torch/extension.h>
|
|
|
|
#include "utils/vector_copy_utils.h"
|
|
#include "../common/micros.h"
|
|
|
|
template<typename scalar_t, bool Aligned, int VecSize>
|
|
__global__ void context_kv_cache_memcpy_kernel(
|
|
const scalar_t* __restrict__ key,
|
|
const scalar_t* __restrict__ value,
|
|
scalar_t* __restrict__ key_cache,
|
|
scalar_t* __restrict__ value_cache,
|
|
const int* __restrict__ sequence_lengths,
|
|
const int* __restrict__ cu_seqlens,
|
|
const int* __restrict__ block_tables,
|
|
const int head_num,
|
|
const int head_dim,
|
|
const int block_size,
|
|
const int batch_size,
|
|
const int block_table_stride,
|
|
const int64_t key_stride,
|
|
const int64_t value_stride
|
|
)
|
|
{
|
|
const int seq_token_id = blockIdx.x;
|
|
const int seq_id = blockIdx.y;
|
|
const int block_id = block_tables[seq_id * block_table_stride + seq_token_id / block_size];
|
|
|
|
if ( block_id < 0 || seq_token_id > sequence_lengths[seq_id] - 1) {
|
|
return ;
|
|
}
|
|
|
|
const int block_offset = seq_token_id % block_size;
|
|
const int hidden_size = head_num * head_dim;
|
|
const int total_token_id = cu_seqlens[seq_id] + seq_token_id;
|
|
int head_id;
|
|
int head_offset;
|
|
int64_t key_src_id;
|
|
int64_t value_src_id;
|
|
int64_t target_id;
|
|
|
|
int i = threadIdx.x * VecSize;
|
|
|
|
for (; i <= (hidden_size - VecSize); i += blockDim.x * VecSize) {
|
|
head_id = i / head_dim;
|
|
head_offset = i % head_dim;
|
|
key_src_id = total_token_id * key_stride + i;
|
|
value_src_id = total_token_id * value_stride + i;
|
|
target_id = block_id * hidden_size * block_size
|
|
+ head_id * block_size * head_dim
|
|
+ block_offset * head_dim + head_offset;
|
|
|
|
copy_vector<scalar_t, VecSize>(key_cache + target_id, key + key_src_id);
|
|
copy_vector<scalar_t, VecSize>(value_cache + target_id, value + value_src_id);
|
|
}
|
|
|
|
// tail process
|
|
if (!Aligned) {
|
|
for (; i < hidden_size; ++i ) {
|
|
head_id = i / head_dim;
|
|
head_offset = i % head_dim;
|
|
key_src_id = total_token_id * key_stride + i;
|
|
value_src_id = total_token_id * value_stride + i;
|
|
target_id = block_id * hidden_size * block_size
|
|
+ head_id * block_size * head_dim
|
|
+ block_offset * head_dim + head_offset;
|
|
|
|
key_cache[target_id] = key[key_src_id];
|
|
value_cache[target_id] = value[value_src_id];
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template<typename scalar_t>
|
|
void apply_context_kv_cache_memcpy(
|
|
at::Tensor& key, // [num_tokens, head_num, head_dim]
|
|
at::Tensor& value, // [num_tokens, head_num, head_dim]
|
|
at::Tensor& key_cache, // [num_blocks, head_num, block_size, head_dim]
|
|
at::Tensor& value_cache, // [num_blocks, head_num, block_size, head_dim]
|
|
at::Tensor& sequence_lengths, // [batch_size]
|
|
at::Tensor& cu_seqlens, // [batch_size + 1]
|
|
at::Tensor& block_tables, // [batch_size, max_seq_len]
|
|
int max_seq_len_in_batch)
|
|
{
|
|
int num_tokens = key.size(0);
|
|
int head_num = key.size(1);
|
|
int head_dim = key.size(2);
|
|
int block_size = key_cache.size(2);
|
|
int batch_size = block_tables.size(0);
|
|
|
|
int64_t key_stride = key.stride(0);
|
|
int64_t value_stride = value.stride(0);
|
|
int block_table_stride = block_tables.stride(0);
|
|
|
|
int vec_size = get_vec_size<scalar_t>(key);
|
|
|
|
bool aligned = true;
|
|
if (head_dim % vec_size != 0) {
|
|
aligned = false;
|
|
}
|
|
|
|
int thread_nums = head_num * head_dim / vec_size;
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
dim3 grid(max_seq_len_in_batch, batch_size);
|
|
dim3 block(std::min(thread_nums, 512));
|
|
|
|
#define CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH(__aligned, __vec_size) \
|
|
do { \
|
|
context_kv_cache_memcpy_kernel<scalar_t, __aligned, __vec_size><<<grid, block, 0, stream>>>( \
|
|
key.data_ptr<scalar_t>(), \
|
|
value.data_ptr<scalar_t>(), \
|
|
key_cache.data_ptr<scalar_t>(), \
|
|
value_cache.data_ptr<scalar_t>(), \
|
|
sequence_lengths.data_ptr<int>(), \
|
|
cu_seqlens.data_ptr<int>(), \
|
|
block_tables.data_ptr<int>(), \
|
|
head_num, \
|
|
head_dim, \
|
|
block_size, \
|
|
batch_size, \
|
|
block_table_stride, \
|
|
key_stride, \
|
|
value_stride \
|
|
); \
|
|
} while(0)
|
|
|
|
#define CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH_VEC_SIZE_CASE(__aligned) \
|
|
do { \
|
|
switch (vec_size) { \
|
|
case 1: \
|
|
CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH(__aligned, 1); \
|
|
break; \
|
|
case 2: \
|
|
CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH(__aligned, 2); \
|
|
break; \
|
|
case 4: \
|
|
CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH(__aligned, 4); \
|
|
break; \
|
|
default: \
|
|
AT_ERROR("Unsupported vectorized size ", vec_size); \
|
|
break; \
|
|
} \
|
|
} while(0)
|
|
|
|
|
|
if (aligned) {
|
|
CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH_VEC_SIZE_CASE(true);
|
|
}
|
|
else {
|
|
CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH_VEC_SIZE_CASE(false);
|
|
}
|
|
|
|
AT_CUDA_CHECK(cudaGetLastError());
|
|
|
|
}
|
|
|
|
void context_kv_cache_memcpy(
|
|
at::Tensor& key, // [num_tokens, head_num, head_dim]
|
|
at::Tensor& value, // [num_tokens, head_num, head_dim]
|
|
at::Tensor& key_cache, // [num_blocks, head_num, block_size, head_dim]
|
|
at::Tensor& value_cache, // [num_blocks, head_num, block_size, head_dim]
|
|
at::Tensor& sequence_lengths, // [batch_size]
|
|
at::Tensor& cu_seqlens, // [batch_size + 1]
|
|
at::Tensor& block_tables, // [batch_size, max_seq_len]
|
|
int max_seq_len_in_batch)
|
|
{
|
|
DISPATCH_FLOAT_HALF_AND_BFLOAT(
|
|
key.scalar_type(),
|
|
"context_kv_cache_memcpy",
|
|
apply_context_kv_cache_memcpy<scalar_t>(
|
|
key,
|
|
value,
|
|
key_cache,
|
|
value_cache,
|
|
sequence_lengths,
|
|
cu_seqlens,
|
|
block_tables,
|
|
max_seq_len_in_batch
|
|
);)
|
|
}
|