ColossalAI/extensions/csrc/cuda/context_kv_cache_memcpy_ker...

183 lines
8.4 KiB
Plaintext

#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "utils/vector_copy_utils.h"
#include "../common/micros.h"
template<typename scalar_t, bool Aligned, int VecSize>
__global__ void context_kv_cache_memcpy_kernel(
const scalar_t* __restrict__ key,
const scalar_t* __restrict__ value,
scalar_t* __restrict__ key_cache,
scalar_t* __restrict__ value_cache,
const int* __restrict__ sequence_lengths,
const int* __restrict__ cu_seqlens,
const int* __restrict__ block_tables,
const int head_num,
const int head_dim,
const int block_size,
const int batch_size,
const int block_table_stride,
const int64_t key_stride,
const int64_t value_stride
)
{
const int seq_token_id = blockIdx.x;
const int seq_id = blockIdx.y;
const int block_id = block_tables[seq_id * block_table_stride + seq_token_id / block_size];
if ( block_id < 0 || seq_token_id > sequence_lengths[seq_id] - 1) {
return ;
}
const int block_offset = seq_token_id % block_size;
const int hidden_size = head_num * head_dim;
const int total_token_id = cu_seqlens[seq_id] + seq_token_id;
int head_id;
int head_offset;
int64_t key_src_id;
int64_t value_src_id;
int64_t target_id;
int i = threadIdx.x * VecSize;
for (; i <= (hidden_size - VecSize); i += blockDim.x * VecSize) {
head_id = i / head_dim;
head_offset = i % head_dim;
key_src_id = total_token_id * key_stride + i;
value_src_id = total_token_id * value_stride + i;
target_id = block_id * hidden_size * block_size
+ head_id * block_size * head_dim
+ block_offset * head_dim + head_offset;
copy_vector<scalar_t, VecSize>(key_cache + target_id, key + key_src_id);
copy_vector<scalar_t, VecSize>(value_cache + target_id, value + value_src_id);
}
// tail process
if (!Aligned) {
for (; i < hidden_size; ++i ) {
head_id = i / head_dim;
head_offset = i % head_dim;
key_src_id = total_token_id * key_stride + i;
value_src_id = total_token_id * value_stride + i;
target_id = block_id * hidden_size * block_size
+ head_id * block_size * head_dim
+ block_offset * head_dim + head_offset;
key_cache[target_id] = key[key_src_id];
value_cache[target_id] = value[value_src_id];
}
}
}
template<typename scalar_t>
void apply_context_kv_cache_memcpy(
at::Tensor& key, // [num_tokens, head_num, head_dim]
at::Tensor& value, // [num_tokens, head_num, head_dim]
at::Tensor& key_cache, // [num_blocks, head_num, block_size, head_dim]
at::Tensor& value_cache, // [num_blocks, head_num, block_size, head_dim]
at::Tensor& sequence_lengths, // [batch_size]
at::Tensor& cu_seqlens, // [batch_size + 1]
at::Tensor& block_tables, // [batch_size, max_seq_len]
int max_seq_len_in_batch)
{
int num_tokens = key.size(0);
int head_num = key.size(1);
int head_dim = key.size(2);
int block_size = key_cache.size(2);
int batch_size = block_tables.size(0);
int64_t key_stride = key.stride(0);
int64_t value_stride = value.stride(0);
int block_table_stride = block_tables.stride(0);
int vec_size = get_vec_size<scalar_t>(key);
bool aligned = true;
if (head_dim % vec_size != 0) {
aligned = false;
}
int thread_nums = head_num * head_dim / vec_size;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
dim3 grid(max_seq_len_in_batch, batch_size);
dim3 block(std::min(thread_nums, 512));
#define CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH(__aligned, __vec_size) \
do { \
context_kv_cache_memcpy_kernel<scalar_t, __aligned, __vec_size><<<grid, block, 0, stream>>>( \
key.data_ptr<scalar_t>(), \
value.data_ptr<scalar_t>(), \
key_cache.data_ptr<scalar_t>(), \
value_cache.data_ptr<scalar_t>(), \
sequence_lengths.data_ptr<int>(), \
cu_seqlens.data_ptr<int>(), \
block_tables.data_ptr<int>(), \
head_num, \
head_dim, \
block_size, \
batch_size, \
block_table_stride, \
key_stride, \
value_stride \
); \
} while(0)
#define CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH_VEC_SIZE_CASE(__aligned) \
do { \
switch (vec_size) { \
case 1: \
CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH(__aligned, 1); \
break; \
case 2: \
CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH(__aligned, 2); \
break; \
case 4: \
CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH(__aligned, 4); \
break; \
default: \
AT_ERROR("Unsupported vectorized size ", vec_size); \
break; \
} \
} while(0)
if (aligned) {
CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH_VEC_SIZE_CASE(true);
}
else {
CONTEXT_KV_CACHE_MEMCOPY_KERNEL_LAUNCH_VEC_SIZE_CASE(false);
}
AT_CUDA_CHECK(cudaGetLastError());
}
void context_kv_cache_memcpy(
at::Tensor& key, // [num_tokens, head_num, head_dim]
at::Tensor& value, // [num_tokens, head_num, head_dim]
at::Tensor& key_cache, // [num_blocks, head_num, block_size, head_dim]
at::Tensor& value_cache, // [num_blocks, head_num, block_size, head_dim]
at::Tensor& sequence_lengths, // [batch_size]
at::Tensor& cu_seqlens, // [batch_size + 1]
at::Tensor& block_tables, // [batch_size, max_seq_len]
int max_seq_len_in_batch)
{
DISPATCH_FLOAT_HALF_AND_BFLOAT(
key.scalar_type(),
"context_kv_cache_memcpy",
apply_context_kv_cache_memcpy<scalar_t>(
key,
value,
key_cache,
value_cache,
sequence_lengths,
cu_seqlens,
block_tables,
max_seq_len_in_batch
);)
}