mirror of https://github.com/hpcaitech/ColossalAI
164 lines
5.3 KiB
Python
164 lines
5.3 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
from typing import List, Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
|
|
from colossalai.registry import LAYERS
|
|
from colossalai.registry import MODELS
|
|
from colossalai.nn.model import ModelFromConfig
|
|
|
|
|
|
@MODELS.register_module
|
|
class VanillaResNet(ModelFromConfig):
|
|
"""ResNet from
|
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_cls: int,
|
|
block_type: str,
|
|
layers: List[int],
|
|
norm_layer_type: str = 'BatchNorm2d',
|
|
in_channels: int = 3,
|
|
groups: int = 1,
|
|
width_per_group: int = 64,
|
|
zero_init_residual: bool = False,
|
|
replace_stride_with_dilation: Optional[List[bool]] = None,
|
|
dilations=(1, 1, 1, 1)
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.inplanes = 64
|
|
self.zero_init_residual = zero_init_residual
|
|
self.blocks = layers
|
|
self.block_expansion = LAYERS.get_module(block_type).expansion
|
|
self.dilations = dilations
|
|
self.reslayer_common_cfg = dict(
|
|
type='ResLayer',
|
|
block_type=block_type,
|
|
norm_layer_type=norm_layer_type,
|
|
groups=groups,
|
|
base_width=width_per_group
|
|
)
|
|
|
|
if replace_stride_with_dilation is None:
|
|
# each element in the tuple indicates if we should replace
|
|
# the 2x2 stride with a dilated convolution instead
|
|
replace_stride_with_dilation = [False, False, False]
|
|
|
|
if len(replace_stride_with_dilation) != 3:
|
|
raise ValueError("replace_stride_with_dilation should be None "
|
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
|
|
|
self.layers_cfg = [
|
|
# conv1
|
|
dict(type='Conv2d',
|
|
in_channels=in_channels,
|
|
out_channels=self.inplanes,
|
|
kernel_size=7,
|
|
stride=2,
|
|
padding=3,
|
|
bias=False),
|
|
# bn1
|
|
dict(
|
|
type=norm_layer_type,
|
|
num_features=self.inplanes
|
|
),
|
|
# relu
|
|
dict(
|
|
type='ReLU',
|
|
inplace=True
|
|
),
|
|
# maxpool
|
|
dict(
|
|
type='MaxPool2d',
|
|
kernel_size=3,
|
|
stride=2,
|
|
padding=1
|
|
),
|
|
# layer 1
|
|
dict(
|
|
inplanes=self.inplanes,
|
|
planes=64,
|
|
blocks=self.blocks[0],
|
|
dilation=self.dilations[0],
|
|
**self.reslayer_common_cfg
|
|
),
|
|
# layer 2
|
|
dict(
|
|
inplanes=64 * self.block_expansion,
|
|
planes=128,
|
|
blocks=self.blocks[1],
|
|
stride=2,
|
|
dilate=replace_stride_with_dilation[0],
|
|
dilation=self.dilations[1],
|
|
**self.reslayer_common_cfg
|
|
),
|
|
# layer 3
|
|
dict(
|
|
inplanes=128 * self.block_expansion,
|
|
planes=256,
|
|
blocks=layers[2],
|
|
stride=2,
|
|
dilate=replace_stride_with_dilation[1],
|
|
dilation=self.dilations[2],
|
|
**self.reslayer_common_cfg
|
|
),
|
|
# layer 4
|
|
dict(
|
|
inplanes=256 * self.block_expansion,
|
|
planes=512,
|
|
blocks=layers[3], stride=2,
|
|
dilate=replace_stride_with_dilation[2],
|
|
dilation=self.dilations[3],
|
|
**self.reslayer_common_cfg
|
|
),
|
|
# avg pool
|
|
dict(
|
|
type='AdaptiveAvgPool2d',
|
|
output_size=(1, 1)
|
|
),
|
|
# flatten
|
|
dict(
|
|
type='LambdaWrapper',
|
|
func=lambda mod, x: torch.flatten(x, 1)
|
|
),
|
|
# linear
|
|
dict(
|
|
type='Linear',
|
|
in_features=512 * self.block_expansion,
|
|
out_features=num_cls
|
|
)
|
|
]
|
|
|
|
def forward(self, x: Tensor):
|
|
for layer in self.layers:
|
|
x = layer(x)
|
|
return x
|
|
|
|
def init_weights(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(
|
|
m.weight, mode='fan_out', nonlinearity='relu')
|
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
# Zero-initialize the last BN in each residual branch,
|
|
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
|
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
|
if self.zero_init_residual:
|
|
for m in self.modules():
|
|
if isinstance(m, LAYERS.get_module('ResNetBottleneck')):
|
|
# type: ignore[arg-type]
|
|
nn.init.constant_(m.bn3.weight, 0)
|
|
elif isinstance(m, LAYERS.get_module('ResNetBasicBlock')):
|
|
# type: ignore[arg-type]
|
|
nn.init.constant_(m.bn2.weight, 0)
|