ColossalAI/colossalai/utils/data_sampler/data_parallel_sampler.py

174 lines
6.7 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
# adpated from torch.utils.data.DistributedSampler
import math
import random
import numpy as np
from typing import TypeVar, Iterator
import torch
from torch.utils.data import Sampler, Dataset, DataLoader
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.registry import DATA_SAMPLERS
T_co = TypeVar('T_co', covariant=True)
@DATA_SAMPLERS.register_module
class DataParallelSampler(Sampler):
"""A data sampler for distributed data parallelism
:param dataset: a Dataset instance
:type dataset: torch.utils.data.Dataset
:param shuffle: whether to shuffle data, defaults to False
:type shuffle: bool, optional
:param seed: the random seed, defaults to 0
:type seed: int, optional
:param drop_last: set to True to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible by the batch size, then the last batch will be smaller, defaults to False
:type drop_last: bool, optional
"""
def __init__(self,
dataset: Dataset,
shuffle: bool = False,
seed: int = 0,
drop_last: bool = False) -> None:
self.dataset = dataset
self.num_replicas = gpc.get_world_size(ParallelMode.DATA)
self.rank = gpc.get_local_rank(ParallelMode.DATA)
self.epoch = 0
self.drop_last = drop_last
# If the dataset length is evenly divisible by # of replicas, then there
# is no need to drop any data, since the dataset will be split equally.
# type: ignore[arg-type]
if self.drop_last and len(self.dataset) % self.num_replicas != 0:
# Split to nearest available length that is evenly divisible.
# This is to ensure each rank receives the same amount of data when
# using this Sampler.
self.num_samples = math.ceil(
# `type:ignore` is required because Dataset cannot provide a default __len__
# see NOTE in pytorch/torch/utils/data/sampler.py
(len(self.dataset) - self.num_replicas) / \
self.num_replicas # type: ignore[arg-type]
)
else:
self.num_samples = math.ceil(
len(self.dataset) / self.num_replicas) # type: ignore[arg-type]
self.total_size = self.num_samples * self.num_replicas
self.shuffle = shuffle
self.seed = seed
def __iter__(self) -> Iterator[T_co]:
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
# type: ignore[arg-type]
indices = torch.randperm(len(self.dataset), generator=g).tolist()
# update for next epoch so that there is no need to call
# set_epoch manually
self.epoch += 1
else:
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
if not self.drop_last:
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(padding_size /
len(indices)))[:padding_size]
else:
# remove tail of data to make it evenly divisible.
indices = indices[:self.total_size]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self) -> int:
return self.num_samples
def set_epoch(self, epoch: int) -> None:
r"""Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
use a different random ordering for each epoch. Otherwise, the next iteration of this
sampler will yield the same ordering.
:param epoch: Epoch number.
:type epoch: int
"""
self.epoch = epoch
def get_dataloader(dataset,
shuffle=False,
seed=1024,
add_sampler=True,
drop_last=False,
pin_memory=False,
num_workers=0,
**kwargs):
'''Set up a deterministic dataloader (also configure seed workers, samplers and whether shuffle or not)
.. note: when pipeline parallel is enabled, shuffle cannot be True
as it will result in mismatch between input data on the 1st
stage and label on the last stage
:param dataset: a :class:utils.data.dataset dataset
:param shuffle: whether to shuffle the dataset
:param seed: random worker seed, defaults to 1024
:param add_sampler: add DistributedDataParallelSampelr to the dataset
:param drop_last: drop the last incomplete batch of data
:param pin_memory: whether to pin memory address in CPU memory
:param num_workers: number of worker threads for this dataloader
:type dataset: :class:`torch.utils.data.Dataset`
:type shuffle: bool, optional. Default is False
:type seed: int, optional. Default is 1024
:type add_sampler: bool, optional. Default is True
:type drop_last: bool, optional. Default is False
:type pin_memory: bool, optional. Default is False
:type num_workers: int, optional. Default is 0
:return: a object of :class:`torch.utils.data.DataLoader`
:rtype: :class:`torch.utils.data.DataLoader`
'''
_kwargs = kwargs.copy()
if add_sampler and gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA) > 1:
sampler = DataParallelSampler(dataset, shuffle=shuffle)
else:
sampler = None
# Deterministic dataloader
def seed_worker(worker_id):
worker_seed = seed
np.random.seed(worker_seed)
torch.manual_seed(worker_seed)
random.seed(worker_seed)
if sampler is None:
return DataLoader(dataset,
worker_init_fn=seed_worker,
shuffle=shuffle,
drop_last=drop_last,
pin_memory=pin_memory,
num_workers=num_workers,
**_kwargs)
else:
return DataLoader(dataset,
sampler=sampler,
worker_init_fn=seed_worker,
drop_last=drop_last,
pin_memory=pin_memory,
num_workers=num_workers,
**_kwargs)