ColossalAI/colossalai/utils/common.py

275 lines
9.5 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import random
import socket
import torch
from torch._six import inf
try:
import colossal_C
except:
pass
from contextlib import contextmanager
import torch.distributed as dist
from colossalai.constants import IS_TENSOR_PARALLEL, NUM_PARTITIONS, TENSOR_PARALLEL_ATTRIBUTES
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from .multi_tensor_apply import multi_tensor_applier
def print_rank_0(msg: str, logger=None):
'''Print messages and save logs(optional). This is executed only if you are the rank-0 gpu.
:param msg: A str message to output
:param logger: python logger object, defaults to None
'''
if gpc.get_global_rank() == 0:
if logger is None:
print(msg, flush=True)
else:
logger.info(msg)
def free_port():
while True:
try:
sock = socket.socket()
port = random.randint(20000, 65000)
sock.bind(('localhost', port))
sock.close()
return port
except Exception:
continue
def sync_model_param_in_dp(model):
'''Make sure data parameters are consistent during Data Parallel Mode
:param model: A pyTorch nn.model on whose parameters you check the consistency
'''
if gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA) > 1:
for param in model.parameters():
ranks = gpc.get_ranks_in_group(ParallelMode.DATA)
dist.broadcast(
param, src=ranks[0], group=gpc.get_group(ParallelMode.DATA))
def is_dp_rank_0():
return not gpc.is_initialized(ParallelMode.DATA) or gpc.is_first_rank(ParallelMode.DATA)
def is_tp_rank_0():
return not gpc.is_initialized(ParallelMode.TENSOR) or gpc.is_first_rank(ParallelMode.TENSOR)
def is_no_pp_or_last_stage():
return not gpc.is_initialized(ParallelMode.PIPELINE) or gpc.is_last_rank(ParallelMode.PIPELINE)
def is_using_ddp():
return gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA) > 1
def is_using_pp():
return gpc.is_initialized(ParallelMode.PIPELINE) and gpc.get_world_size(ParallelMode.PIPELINE) > 1
@contextmanager
def conditional_context(context_manager, enable=True):
if enable:
with context_manager:
yield
else:
yield
def is_model_parallel_parameter(p):
return hasattr(p, IS_TENSOR_PARALLEL) and getattr(p, IS_TENSOR_PARALLEL)
def _calc_l2_norm(grads):
norm = 0.0
if len(grads) > 0:
dummy_overflow_buf = torch.cuda.IntTensor([0])
norm, _ = multi_tensor_applier(
colossal_C.multi_tensor_l2norm,
dummy_overflow_buf,
[grads],
False # no per-parameter norm
)
return norm
def _calc_lp(grads, norm_type):
norm = 0.0
for grad in grads:
grad_norm = torch.norm(grad, norm_type)
norm += grad_norm ** norm_type
return norm
# ======== Gradient Clipping =========
def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
"""Clips gradient norm of an iterable of parameters whose gradients
are in fp32.
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
added functionality to handle model parallel parameters. Note that
the gradients are modified in place.
:param parameters: an iterable of Tensors or a single Tensor that will have gradients normalized
:type parameters: (Iterable[Tensor] or Tensor)
:param max_norm: max norm of the gradients
:type max_norm: float or int
:param norm_type: type of the used p-norm. Can be ``'inf'`` for infinity norm.
:type norm_type: float or int
:return: Total norm of the parameters (viewed as a single vector).
:rtype: float
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
# Filter parameters based on:
# - grad should not be none
# - parameter should not be shared
# - should not be a replica due to tensor model parallelism
params = []
for param in parameters:
if param.grad is not None:
# Make sure the grads are in fp32
assert param.grad.type() == 'torch.cuda.FloatTensor', \
f'expected gradient to be dtype torch.cuda.FloatTensor, but got {param.grad.type()}'
params.append(param)
# Norm parameters.
max_norm = float(max_norm)
norm_type = float(norm_type)
# Calculate norm.
if norm_type == inf:
total_norm = max(p.grad.data.abs().max() for p in params)
total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
ops = []
# Take max across all model-parallel GPUs.
if gpc.is_initialized(ParallelMode.TENSOR) and gpc.get_world_size(ParallelMode.TENSOR) > 1:
ops.append(dist.all_reduce(total_norm_cuda,
op=dist.ReduceOp.MAX,
group=gpc.get_group(
ParallelMode.TENSOR),
async_op=True))
if gpc.is_initialized(ParallelMode.PIPELINE) and gpc.get_world_size(ParallelMode.PIPELINE) > 1:
ops.append(dist.all_reduce(total_norm_cuda,
op=dist.ReduceOp.MAX,
group=gpc.get_group(
ParallelMode.PIPELINE),
async_op=True))
for req in ops:
req.wait()
total_norm = total_norm_cuda[0].item()
else:
tensor_parallel_grads = []
no_tensor_parallel_grads = []
for p in params:
if is_model_parallel_parameter(p):
reductor = (gpc.get_world_size(ParallelMode.TENSOR) / getattr(p, NUM_PARTITIONS)) ** (1 / norm_type)
tensor_parallel_grads.append(p.grad.data / reductor)
else:
no_tensor_parallel_grads.append(p.grad.data)
if norm_type == 2.0:
tensor_parallel_norm = _calc_l2_norm(
tensor_parallel_grads) ** norm_type
no_tensor_parallel_norm = _calc_l2_norm(
no_tensor_parallel_grads) ** norm_type
else:
tensor_parallel_norm = _calc_lp(tensor_parallel_grads, norm_type)
no_tensor_parallel_grads = _calc_lp(
no_tensor_parallel_grads, norm_type)
# Sum across all model-parallel GPUs.
if gpc.is_initialized(ParallelMode.TENSOR) and len(tensor_parallel_grads) > 0:
dist.all_reduce(tensor_parallel_norm,
op=dist.ReduceOp.SUM,
group=gpc.get_group(ParallelMode.TENSOR))
total_norm = tensor_parallel_norm + no_tensor_parallel_norm
if gpc.is_initialized(ParallelMode.PIPELINE) and gpc.get_world_size(ParallelMode.PIPELINE) > 1:
dist.all_reduce(total_norm,
op=dist.ReduceOp.SUM,
group=gpc.get_group(ParallelMode.PIPELINE))
total_norm = total_norm ** (1.0 / norm_type)
if type(total_norm) == 'torch.cuda.FloatTensor':
total_norm = total_norm.item()
# Scale.
clip_coeff = max_norm / (total_norm + 1.0e-6)
if clip_coeff < 1.0:
grads = [p.grad.detach() for p in params]
dummy_overflow_buf = torch.cuda.IntTensor([0])
multi_tensor_applier(colossal_C.multi_tensor_scale,
dummy_overflow_buf,
[grads, grads],
clip_coeff)
return total_norm
def count_zeros_fp32(parameters):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
# Filter parameters based on:
# - grad should not be none
# - parameter should not be shared
# - should not be a replica due to tensor model parallelism
total_num_zeros = 0.0
for param in parameters:
grad_not_none = param.grad is not None
is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
if grad_not_none and is_not_tp_duplicate:
grad = param.grad.detach()
num_zeros = grad.numel() - torch.count_nonzero(grad)
total_num_zeros = num_zeros + total_num_zeros
# Sum across all model-parallel GPUs.
ops = []
ops.append(dist.all_reduce(total_num_zeros,
op=dist.ReduceOp.SUM,
group=gpc.get_group(ParallelMode.TENSOR),
async_op=True))
ops.append(dist.all_reduce(total_num_zeros,
op=dist.ReduceOp.SUM,
group=gpc.get_group(ParallelMode.PIPELINE),
async_op=True))
for req in ops:
req.wait()
total_num_zeros = total_num_zeros.item()
return total_num_zeros
def copy_tensor_parallel_attributes(src_tensor, dst_tensor):
for attr in TENSOR_PARALLEL_ATTRIBUTES:
if hasattr(src_tensor, attr):
val = getattr(src_tensor, attr)
setattr(dst_tensor, attr, val)
def param_is_not_tensor_parallel_duplicate(param):
return (hasattr(param, IS_TENSOR_PARALLEL) and
getattr(param, IS_TENSOR_PARALLEL)) or (
gpc.get_local_rank(ParallelMode.TENSOR) == 0)
@contextmanager
def switch_virtual_pipeline_parallel_rank(rank):
prev_rank = gpc.virtual_pipeline_parallel_rank
try:
gpc.set_virtual_pipeline_parallel_rank(rank)
yield
finally:
gpc.set_virtual_pipeline_parallel_rank(prev_rank)