mirror of https://github.com/hpcaitech/ColossalAI
48 lines
1.6 KiB
Python
48 lines
1.6 KiB
Python
from torch.nn import functional as F
|
|
from functools import partial
|
|
|
|
import colossalai
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
from colossalai.testing import rerun_if_address_is_in_use
|
|
from colossalai.utils import free_port
|
|
from colossalai.tensor import ColoParameter, ColoTensorSpec, ProcessGroup
|
|
from _utils import tensor_equal, tensor_shard_equal, split_param_col_tp1d
|
|
|
|
|
|
def run_with_spec(spec_init_func):
|
|
pg = ProcessGroup(tp_degree=torch.distributed.get_world_size())
|
|
model = torch.nn.EmbeddingBag(10, 4).cuda()
|
|
weight = ColoParameter(model.weight.clone(), True, ColoTensorSpec(pg))
|
|
|
|
spec_init_func(weight, pg)
|
|
|
|
inputs = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9]).cuda()
|
|
offsets = torch.tensor([0, 4]).cuda()
|
|
out = model(inputs, offsets=offsets)
|
|
colo_out = F.embedding_bag(inputs, weight, offsets=offsets)
|
|
assert tensor_equal(out, colo_out)
|
|
grad = torch.rand_like(out)
|
|
out.backward(grad)
|
|
colo_out.backward(grad)
|
|
assert tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size())
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
run_with_spec(split_param_col_tp1d)
|
|
|
|
|
|
@pytest.mark.dist
|
|
@pytest.mark.parametrize('world_size', [1, 4])
|
|
@rerun_if_address_is_in_use()
|
|
def test_embedding_bag_1d(world_size):
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_embedding_bag_1d(4)
|