ColossalAI/tests/test_autochunk/test_autochunk_codegen.py

121 lines
3.8 KiB
Python

from functools import partial
import pytest
import torch
import torch.fx
import torch.multiprocessing as mp
import colossalai
from colossalai.core import global_context as gpc
from colossalai.fx import ColoTracer
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.fx.profiler import MetaTensor
from colossalai.utils import free_port
from tests.test_autochunk.evoformer.evoformer import evoformer_base
if CODEGEN_AVAILABLE:
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
def _test_fwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair):
# for memory test
# torch.cuda.reset_peak_memory_stats()
# now_mem = torch.cuda.memory_allocated() / 1024**2
# with torch.no_grad():
# node1 = node.clone()
# pair1 = pair.clone()
# gm(node1, pair1)
# new_now_mem = torch.cuda.memory_allocated() / 1024**2
# new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
# print(
# "autochunk now mem:%.2f max mem:%.2f"
# % (new_now_mem - now_mem, new_max_mem - now_mem)
# )
# test forward
with torch.no_grad():
non_fx_out = model(node, pair)
fx_out = gm(node, pair)
assert torch.allclose(
non_fx_out[0], fx_out[0], atol=1e-4
), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(non_fx_out[0] - fx_out[0])
)
assert torch.allclose(
non_fx_out[1], fx_out[1], atol=1e-4
), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(non_fx_out[1] - fx_out[1])
)
def _test_autochunk_codegen(rank, msa_len, pair_len, max_memory):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
colossalai.launch(
config={},
rank=rank,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
# build model and input
model = evoformer_base().cuda()
node = torch.randn(1, msa_len, pair_len, 256).cuda()
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
# trace the module and replace codegen
graph = ColoTracer().trace(
model,
meta_args={
"node": node.to(torch.device("meta")),
"pair": pair.to(torch.device("meta")),
},
)
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
interp = MetaInfoProp(gm_prop)
interp.propagate(
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
)
# now run it twice to get meta info in graph module, not necessary
gm = torch.fx.GraphModule(model, graph)
interp = MetaInfoProp(gm)
interp.propagate(
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
)
codegen = AutoChunkCodeGen(gm_prop, max_memory=max_memory)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph)
gm.recompile()
# assert we have inserted chunk
code = graph.python_code("self").src
assert "chunk_size" in code
# print(code)
_test_fwd(model, gm, node, pair)
gpc.destroy()
@pytest.mark.skipif(not CODEGEN_AVAILABLE, reason='torch version is lower than 1.12.0')
@pytest.mark.parametrize("max_memory", [None, 20, 25, 30])
@pytest.mark.parametrize("msa_len", [32])
@pytest.mark.parametrize("pair_len", [64])
def test_autochunk_codegen(msa_len, pair_len, max_memory):
run_func = partial(
_test_autochunk_codegen,
msa_len=msa_len,
pair_len=pair_len,
max_memory=max_memory,
)
mp.spawn(run_func, nprocs=1)
if __name__ == "__main__":
_test_autochunk_codegen(0, 32, 64, 25)