ColossalAI/examples/community/roberta/pretraining/utils/exp_util.py

115 lines
3.7 KiB
Python

import functools
import os
import shutil
import psutil
import torch
from colossalai.core import global_context as gpc
def logging(s, log_path, print_=True, log_=True):
if print_:
print(s)
if log_:
with open(log_path, 'a+') as f_log:
f_log.write(s + '\n')
def get_logger(log_path, **kwargs):
return functools.partial(logging, log_path=log_path, **kwargs)
def create_exp_dir(dir_path, scripts_to_save=None, debug=False):
if debug:
print('Debug Mode : no experiment dir created')
return functools.partial(logging, log_path=None, log_=False)
if not os.path.exists(dir_path):
os.makedirs(dir_path)
print('Experiment dir : {}'.format(dir_path))
if scripts_to_save is not None:
script_path = os.path.join(dir_path, 'scripts')
if not os.path.exists(script_path):
os.makedirs(script_path)
for script in scripts_to_save:
dst_file = os.path.join(dir_path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)
return get_logger(log_path=os.path.join(dir_path, 'log.txt'))
def get_cpu_mem():
return psutil.Process().memory_info().rss / 1024**2
def get_gpu_mem():
return torch.cuda.memory_allocated() / 1024**2
def get_mem_info(prefix=''):
return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB'
def get_tflops(model_numel, batch_size, seq_len, step_time):
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
def get_parameters_in_billions(model, world_size=1):
gpus_per_model = world_size
approx_parameters_in_billions = sum([
sum([p.ds_numel if hasattr(p, 'ds_id') else p.nelement()
for p in model_module.parameters()])
for model_module in model
])
return approx_parameters_in_billions * gpus_per_model / (1e9)
def throughput_calculator(numel, args, config, iteration_time, total_iterations, world_size=1):
gpus_per_model = 1
batch_size = args.train_micro_batch_size_per_gpu
samples_per_model = batch_size * args.max_seq_length
model_replica_count = world_size / gpus_per_model
approx_parameters_in_billions = numel
elapsed_time_per_iter = iteration_time / total_iterations
samples_per_second = batch_size / elapsed_time_per_iter
#flops calculator
hidden_size = config.hidden_size
num_layers = config.num_hidden_layers
vocab_size = config.vocab_size
# General TFLOPs formula (borrowed from Equation 3 in Section 5.1 of
# https://arxiv.org/pdf/2104.04473.pdf).
# The factor of 4 is when used with activation check-pointing,
# otherwise it will be 3.
checkpoint_activations_factor = 4 if args.checkpoint_activations else 3
flops_per_iteration = (24 * checkpoint_activations_factor * batch_size * args.max_seq_length * num_layers *
(hidden_size**2)) * (1. + (args.max_seq_length / (6. * hidden_size)) +
(vocab_size / (16. * num_layers * hidden_size)))
tflops = flops_per_iteration / (elapsed_time_per_iter * (10**12))
return samples_per_second, tflops, approx_parameters_in_billions
def synchronize():
if not torch.distributed.is_available():
return
if not torch.distributed.is_intialized():
return
world_size = torch.distributed.get_world_size()
if world_size == 1:
return
torch.distributed.barrier()
def log_args(logger, args):
logger.info('--------args----------')
message = '\n'.join([f'{k:<30}: {v}' for k, v in vars(args).items()])
message += '\n'
message += '\n'.join([f'{k:<30}: {v}' for k, v in gpc.config.items()])
logger.info(message)
logger.info('--------args----------\n')