ColossalAI/examples/images/resnet
Jianghai 31dc302017
[examples] copy resnet example to image (#4090)
* copy resnet example

* add pytest package

* skip test_ci

* skip test_ci

* skip test_ci
2023-06-27 16:40:46 +08:00
..
.gitignore [examples] copy resnet example to image (#4090) 2023-06-27 16:40:46 +08:00
README.md [examples] copy resnet example to image (#4090) 2023-06-27 16:40:46 +08:00
eval.py [examples] copy resnet example to image (#4090) 2023-06-27 16:40:46 +08:00
requirements.txt [examples] copy resnet example to image (#4090) 2023-06-27 16:40:46 +08:00
test_ci.sh [examples] copy resnet example to image (#4090) 2023-06-27 16:40:46 +08:00
train.py [examples] copy resnet example to image (#4090) 2023-06-27 16:40:46 +08:00

README.md

Train ResNet on CIFAR-10 from scratch

🚀 Quick Start

This example provides a training script and an evaluation script. The training script provides an example of training ResNet on CIFAR10 dataset from scratch.

  • Training Arguments

    • -p, --plugin: Plugin to use. Choices: torch_ddp, torch_ddp_fp16, low_level_zero. Defaults to torch_ddp.
    • -r, --resume: Resume from checkpoint file path. Defaults to -1, which means not resuming.
    • -c, --checkpoint: The folder to save checkpoints. Defaults to ./checkpoint.
    • -i, --interval: Epoch interval to save checkpoints. Defaults to 5. If set to 0, no checkpoint will be saved.
    • --target_acc: Target accuracy. Raise exception if not reached. Defaults to None.
  • Eval Arguments

    • -e, --epoch: select the epoch to evaluate
    • -c, --checkpoint: the folder where checkpoints are found

Install requirements

pip install -r requirements.txt

Train

The folders will be created automatically.

# train with torch DDP with fp32
colossalai run --nproc_per_node 2 train.py -c ./ckpt-fp32

# train with torch DDP with mixed precision training
colossalai run --nproc_per_node 2 train.py -c ./ckpt-fp16 -p torch_ddp_fp16

# train with low level zero
colossalai run --nproc_per_node 2 train.py -c ./ckpt-low_level_zero -p low_level_zero

Eval

# evaluate fp32 training
python eval.py -c ./ckpt-fp32 -e 80

# evaluate fp16 mixed precision training
python eval.py -c ./ckpt-fp16 -e 80

# evaluate low level zero training
python eval.py -c ./ckpt-low_level_zero -e 80

Expected accuracy performance will be:

Model Single-GPU Baseline FP32 Booster DDP with FP32 Booster DDP with FP16 Booster Low Level Zero
ResNet-18 85.85% 84.91% 85.46% 84.50%

Note: the baseline is adapted from the script to use torchvision.models.resnet18