mirror of https://github.com/hpcaitech/ColossalAI
401 lines
16 KiB
Python
401 lines
16 KiB
Python
from functools import partial
|
|
from typing import Callable, Dict, List
|
|
|
|
from torch import Tensor, nn
|
|
|
|
import colossalai.shardformer.layer as col_nn
|
|
|
|
from .._utils import getattr_, setattr_
|
|
from ..modeling.gpt2 import GPT2PipelineForwards, get_gpt2_flash_attention_forward, gpt2_sequence_parallel_forward_fn
|
|
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
__all__ = [
|
|
'GPT2Policy', 'GPT2ModelPolicy', 'GPT2LMHeadModelPolicy', 'GPT2DoubleHeadsModelPolicy',
|
|
'GPT2ForTokenClassificationPolicy', 'GPT2ForSequenceClassificationPolicy'
|
|
]
|
|
|
|
|
|
class GPT2Policy(Policy):
|
|
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
# reshape the embedding layer
|
|
r"""
|
|
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
|
"""
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
vocab_size = self.model.config.vocab_size
|
|
world_size = self.shard_config.tensor_parallel_size
|
|
if vocab_size % world_size != 0:
|
|
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
|
self.model.resize_token_embeddings(new_vocab_size)
|
|
return self.model
|
|
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2Block, GPT2Model
|
|
|
|
policy = {}
|
|
use_sequence_parallel = self.shard_config.enable_sequence_parallelism
|
|
overlap = self.shard_config.enable_sequence_overlap
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
policy[GPT2Model] = ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="wte",
|
|
target_module=col_nn.VocabParallelEmbedding1D,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="drop",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
])
|
|
|
|
policy[GPT2Block] = ModulePolicyDescription(
|
|
attribute_replacement={
|
|
"attn.embed_dim": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"attn.split_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="attn.c_attn",
|
|
target_module=col_nn.GPT2FusedLinearConv1D_Col,
|
|
kwargs={
|
|
"n_fused": 3,
|
|
"seq_parallel": use_sequence_parallel,
|
|
"overlap": overlap
|
|
},
|
|
),
|
|
SubModuleReplacementDescription(suffix="attn.c_proj",
|
|
target_module=col_nn.GPT2FusedLinearConv1D_Row,
|
|
kwargs={
|
|
"seq_parallel": use_sequence_parallel,
|
|
}),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.c_fc",
|
|
target_module=col_nn.GPT2FusedLinearConv1D_Col,
|
|
kwargs={
|
|
"n_fused": 1,
|
|
"seq_parallel": use_sequence_parallel,
|
|
"overlap": overlap
|
|
},
|
|
),
|
|
SubModuleReplacementDescription(suffix="mlp.c_proj",
|
|
target_module=col_nn.GPT2FusedLinearConv1D_Row,
|
|
kwargs={
|
|
"seq_parallel": use_sequence_parallel,
|
|
}),
|
|
SubModuleReplacementDescription(
|
|
suffix="attn.attn_dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="attn.resid_dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
])
|
|
|
|
# optimization configuration
|
|
if self.shard_config.enable_fused_normalization:
|
|
self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription(
|
|
suffix="ln_f",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
),
|
|
policy=policy,
|
|
target_key=GPT2Model)
|
|
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="ln_1",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="ln_2",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
),
|
|
SubModuleReplacementDescription(suffix="ln_cross_attn",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
ignore_if_not_exist=True)
|
|
],
|
|
policy=policy,
|
|
target_key=GPT2Block)
|
|
|
|
if self.shard_config.enable_flash_attention:
|
|
self.append_or_create_method_replacement(description={
|
|
'forward': get_gpt2_flash_attention_forward(),
|
|
},
|
|
policy=policy,
|
|
target_key=GPT2Attention)
|
|
|
|
if self.shard_config.enable_sequence_parallelism:
|
|
policy[GPT2Model].method_replacement = {"forward": gpt2_sequence_parallel_forward_fn(self.shard_config)}
|
|
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
assert self.pipeline_stage_manager is not None
|
|
|
|
if self.model.__class__.__name__ == 'GPT2Model':
|
|
module = self.model
|
|
else:
|
|
module = self.model.transformer
|
|
stage_manager = self.pipeline_stage_manager
|
|
|
|
held_layers = []
|
|
layers_per_stage = self.distribute_layers(len(module.h), stage_manager.num_stages)
|
|
if stage_manager.is_first_stage():
|
|
held_layers.append(module.wte)
|
|
held_layers.append(module.wpe)
|
|
held_layers.append(module.drop)
|
|
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
|
held_layers.extend(module.h[start_idx:end_idx])
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(module.ln_f)
|
|
return held_layers
|
|
|
|
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
|
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
|
to customized forward method, and add this changing to policy."""
|
|
if not self.pipeline_stage_manager:
|
|
raise ValueError("set_pipeline_forward method can only be called when pipeline parallel is enabled.")
|
|
stage_manager = self.pipeline_stage_manager
|
|
if self.model.__class__.__name__ == 'GPT2Model':
|
|
module = self.model
|
|
else:
|
|
module = self.model.transformer
|
|
|
|
layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages)
|
|
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
|
method_replacement = {
|
|
'forward':
|
|
partial(new_forward,
|
|
stage_manager=stage_manager,
|
|
stage_index=stage_index,
|
|
shard_config=self.shard_config)
|
|
}
|
|
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)
|
|
|
|
|
|
# GPT2Model
|
|
class GPT2ModelPolicy(GPT2Policy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
|
|
|
|
policy = super().module_policy()
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(model_cls=GPT2Model,
|
|
new_forward=GPT2PipelineForwards.gpt2_model_forward,
|
|
policy=policy)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
return super().get_held_layers()
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in GPT2Model."""
|
|
return []
|
|
|
|
|
|
# GPT2LMHeadModel
|
|
class GPT2LMHeadModelPolicy(GPT2Policy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
|
|
|
module_policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
addon_module = {
|
|
GPT2LMHeadModel:
|
|
ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head", target_module=col_nn.Linear1D_Col, kwargs={"gather_output": True})
|
|
])
|
|
}
|
|
module_policy.update(addon_module)
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(model_cls=GPT2LMHeadModel,
|
|
new_forward=GPT2PipelineForwards.gpt2_lmhead_model_forward,
|
|
policy=module_policy)
|
|
return module_policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.lm_head)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
'''The weights of wte and lm_head are shared.'''
|
|
module = self.model
|
|
stage_manager = self.pipeline_stage_manager
|
|
if stage_manager is not None:
|
|
if stage_manager.num_stages > 1 and id(module.transformer.wte.weight) == id(module.lm_head.weight):
|
|
first_stage, last_stage = 0, stage_manager.num_stages - 1
|
|
return [{first_stage: module.transformer.wte.weight, last_stage: module.lm_head.weight}]
|
|
return []
|
|
|
|
|
|
# GPT2DoubleHeadsModel
|
|
class GPT2DoubleHeadsModelPolicy(GPT2Policy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2DoubleHeadsModel
|
|
|
|
module_policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
addon_module = {
|
|
GPT2DoubleHeadsModel:
|
|
ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head", target_module=col_nn.Linear1D_Col, kwargs={"gather_output": True})
|
|
])
|
|
}
|
|
module_policy.update(addon_module)
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(model_cls=GPT2DoubleHeadsModel,
|
|
new_forward=GPT2PipelineForwards.gpt2_double_heads_model_forward,
|
|
policy=module_policy)
|
|
|
|
return module_policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
multiple_choice_head = self.model.multiple_choice_head
|
|
held_layers.append(self.model.lm_head)
|
|
held_layers.append(multiple_choice_head.summary)
|
|
held_layers.append(multiple_choice_head.activation)
|
|
held_layers.append(multiple_choice_head.first_dropout)
|
|
held_layers.append(multiple_choice_head.last_dropout)
|
|
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
'''The weights of wte and lm_head are shared.'''
|
|
module = self.model
|
|
stage_manager = self.pipeline_stage_manager
|
|
if stage_manager is not None:
|
|
if stage_manager.num_stages > 1 and id(module.transformer.wte.weight) == id(module.lm_head.weight):
|
|
first_stage, last_stage = 0, stage_manager.num_stages - 1
|
|
return [{first_stage: module.transformer.wte.weight, last_stage: module.lm_head.weight}]
|
|
return []
|
|
|
|
|
|
# GPT2ForQuestionAnswering
|
|
class GPT2ForQuestionAnsweringPolicy(GPT2Policy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2ForQuestionAnswering
|
|
|
|
module_policy = super().module_policy()
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(model_cls=GPT2ForQuestionAnswering,
|
|
new_forward=GPT2PipelineForwards.gpt2_for_question_answering_forward,
|
|
policy=module_policy)
|
|
|
|
return module_policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.qa_outputs)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
'''No shared_params in gpt2 for QA.'''
|
|
return []
|
|
|
|
|
|
# GPT2ForTokenClassification
|
|
class GPT2ForTokenClassificationPolicy(GPT2Policy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2ForTokenClassification
|
|
|
|
module_policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
addon_module = {
|
|
GPT2ForTokenClassification:
|
|
ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(suffix="dropout", target_module=col_nn.DropoutForParallelInput)
|
|
])
|
|
}
|
|
module_policy.update(addon_module)
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(model_cls=GPT2ForTokenClassification,
|
|
new_forward=GPT2PipelineForwards.gpt2_for_token_classification_forward,
|
|
policy=module_policy)
|
|
return module_policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.dropout)
|
|
held_layers.append(self.model.classifier)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in GPT2ForTokenClassification."""
|
|
return []
|
|
|
|
|
|
# GPT2ForSequenceClassification
|
|
class GPT2ForSequenceClassificationPolicy(GPT2Policy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2ForSequenceClassification
|
|
|
|
module_policy = super().module_policy()
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(model_cls=GPT2ForSequenceClassification,
|
|
new_forward=GPT2PipelineForwards.gpt2_for_sequence_classification_forward,
|
|
policy=module_policy)
|
|
return module_policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.score)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in GPT2ForTokenClassification."""
|
|
return []
|