mirror of https://github.com/hpcaitech/ColossalAI
258 lines
12 KiB
Python
258 lines
12 KiB
Python
from functools import partial
|
|
from typing import Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
|
|
import colossalai.shardformer.layer as col_nn
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
from colossalai.shardformer.modeling.chatglm2 import ChatGLMPipelineForwards
|
|
from colossalai.shardformer.modeling.chatglm2_6b.configuration_chatglm import ChatGLMConfig
|
|
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import (
|
|
ChatGLMForConditionalGeneration,
|
|
ChatGLMModel,
|
|
GLMBlock,
|
|
)
|
|
|
|
from ..modeling.chatglm2 import (
|
|
get_chatglm_sequence_parallel_forward_fn,
|
|
get_flash_core_attention_forward,
|
|
get_jit_fused_glm_block_forward,
|
|
)
|
|
from ..modeling.jit import get_jit_fused_dropout_add_func
|
|
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
__all__ = ['ChatGLMPolicy', 'ChatGLMModelPolicy', 'ChatGLMForConditionalGenerationPolicy']
|
|
|
|
|
|
class ChatGLMPolicy(Policy):
|
|
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
# Resize embedding
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
vocab_size = self.model.config.padded_vocab_size
|
|
world_size = self.shard_config.tensor_parallel_size
|
|
|
|
if vocab_size % world_size != 0:
|
|
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
|
self.model.resize_token_embeddings(new_vocab_size)
|
|
|
|
return self.model
|
|
|
|
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
|
|
|
|
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMModel, CoreAttention, GLMBlock
|
|
|
|
policy = {}
|
|
|
|
use_sequence_parallel = self.shard_config.enable_sequence_parallelism
|
|
overlap = self.shard_config.enable_sequence_overlap
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
policy[ChatGLMModel] = ModulePolicyDescription(attribute_replacement={},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="embedding.word_embeddings",
|
|
target_module=col_nn.VocabParallelEmbedding1D,
|
|
)
|
|
])
|
|
|
|
policy[GLMBlock] = ModulePolicyDescription(
|
|
attribute_replacement={
|
|
"self_attention.num_attention_heads_per_partition":
|
|
self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
|
"self_attention.projection_size":
|
|
(self.model.config.kv_channels * self.model.config.num_attention_heads) //
|
|
self.shard_config.tensor_parallel_size,
|
|
"self_attention.qkv_hidden_size":
|
|
(self.model.config.kv_channels * self.model.config.num_attention_heads * 3) //
|
|
self.shard_config.tensor_parallel_size,
|
|
"self_attention.core_attention.num_attention_heads_per_partition":
|
|
self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
|
"self_attention.core_attention.hidden_size_per_partition":
|
|
self.model.config.kv_channels * self.model.config.num_attention_heads //
|
|
self.shard_config.tensor_parallel_size,
|
|
},
|
|
param_replacement=[],
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(suffix="self_attention.query_key_value",
|
|
target_module=col_nn.Linear1D_Col,
|
|
kwargs={
|
|
'seq_parallel': use_sequence_parallel,
|
|
'seq_parallel_dim': 0,
|
|
'overlap': overlap
|
|
}),
|
|
SubModuleReplacementDescription(suffix="self_attention.dense",
|
|
target_module=col_nn.Linear1D_Row,
|
|
kwargs={
|
|
'seq_parallel': use_sequence_parallel,
|
|
'seq_parallel_dim': 0
|
|
}),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attention.core_attention.attention_dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
])
|
|
|
|
# optimization configuration
|
|
if self.shard_config.enable_fused_normalization:
|
|
if not self.model.config.rmsnorm:
|
|
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(suffix="input_layernorm", target_module=col_nn.FusedLayerNorm),
|
|
SubModuleReplacementDescription(suffix="post_attention_layernorm",
|
|
target_module=col_nn.FusedLayerNorm)
|
|
],
|
|
policy=policy,
|
|
target_key=GLMBlock)
|
|
|
|
if self.model.config.post_layer_norm:
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(suffix="encoder.final_layernorm",
|
|
target_module=col_nn.FusedLayerNorm)
|
|
],
|
|
policy=policy,
|
|
target_key=ChatGLMModel)
|
|
|
|
else:
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(suffix="input_layernorm", target_module=col_nn.FusedRMSNorm),
|
|
SubModuleReplacementDescription(suffix="post_attention_layernorm",
|
|
target_module=col_nn.FusedRMSNorm)
|
|
],
|
|
policy=policy,
|
|
target_key=GLMBlock)
|
|
|
|
if self.model.config.post_layer_norm:
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(suffix="encoder.final_layernorm",
|
|
target_module=col_nn.FusedRMSNorm)
|
|
],
|
|
policy=policy,
|
|
target_key=ChatGLMModel)
|
|
|
|
# use flash attention
|
|
if self.shard_config.enable_flash_attention:
|
|
self.append_or_create_method_replacement(description={
|
|
'forward': get_flash_core_attention_forward(),
|
|
},
|
|
policy=policy,
|
|
target_key=CoreAttention)
|
|
|
|
# use sequence parallel
|
|
if use_sequence_parallel:
|
|
self.append_or_create_method_replacement(
|
|
description={'forward': get_chatglm_sequence_parallel_forward_fn(self.shard_config)},
|
|
policy=policy,
|
|
target_key=ChatGLMModel)
|
|
|
|
# use jit fused operator
|
|
if self.shard_config.enable_jit_fused:
|
|
self.append_or_create_method_replacement(description={
|
|
'forward': get_jit_fused_glm_block_forward(),
|
|
'dropout_add': get_jit_fused_dropout_add_func(),
|
|
},
|
|
policy=policy,
|
|
target_key=GLMBlock)
|
|
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
assert self.pipeline_stage_manager is not None
|
|
|
|
if self.model.__class__.__name__ == 'ChatGLMModel':
|
|
module = self.model
|
|
else:
|
|
module = self.model.transformer
|
|
stage_manager = self.pipeline_stage_manager
|
|
|
|
held_layers = []
|
|
layers_per_stage = self.distribute_layers(module.num_layers, stage_manager.num_stages)
|
|
if stage_manager.is_first_stage():
|
|
held_layers.append(module.embedding)
|
|
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
|
held_layers.extend(module.encoder.layers[start_idx:end_idx])
|
|
if stage_manager.is_last_stage():
|
|
if module.encoder.post_layer_norm:
|
|
held_layers.append(module.encoder.final_layernorm)
|
|
|
|
# rotary_pos_emb is needed for all stages
|
|
held_layers.append(module.rotary_pos_emb)
|
|
|
|
return held_layers
|
|
|
|
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
|
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
|
to customized forward method, and add this changing to policy."""
|
|
if not self.pipeline_stage_manager:
|
|
raise ValueError("set_pipeline_forward method can only be called when pipeline parallel is enabled.")
|
|
stage_manager = self.pipeline_stage_manager
|
|
if self.model.__class__.__name__ == 'ChatGLMModel':
|
|
module = self.model
|
|
else:
|
|
module = self.model.transformer
|
|
|
|
layers_per_stage = Policy.distribute_layers(module.num_layers, stage_manager.num_stages)
|
|
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
|
method_replacement = {
|
|
'forward':
|
|
partial(new_forward,
|
|
stage_manager=stage_manager,
|
|
stage_index=stage_index,
|
|
shard_config=self.shard_config)
|
|
}
|
|
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)
|
|
|
|
|
|
class ChatGLMModelPolicy(ChatGLMPolicy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
|
|
|
|
policy = super().module_policy()
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(model_cls=ChatGLMModel,
|
|
new_forward=ChatGLMPipelineForwards.chatglm_model_forward,
|
|
policy=policy)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
return super().get_held_layers()
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in ChatGLMModel."""
|
|
return []
|
|
|
|
|
|
class ChatGLMForConditionalGenerationPolicy(ChatGLMModelPolicy):
|
|
|
|
def module_policy(self):
|
|
policy = super().module_policy()
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(model_cls=ChatGLMForConditionalGeneration,
|
|
new_forward=ChatGLMPipelineForwards.chatglm_for_conditional_generation_forward,
|
|
policy=policy)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.transformer.output_layer)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in ChatGLMForConditionalGenerationModel."""
|
|
return []
|