ColossalAI/colossalai/shardformer/policies/chatglm2.py

258 lines
12 KiB
Python

from functools import partial
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch.nn as nn
from torch import Tensor
from transformers.modeling_outputs import BaseModelOutputWithPast
import colossalai.shardformer.layer as col_nn
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer.modeling.chatglm2 import ChatGLMPipelineForwards
from colossalai.shardformer.modeling.chatglm2_6b.configuration_chatglm import ChatGLMConfig
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import (
ChatGLMForConditionalGeneration,
ChatGLMModel,
GLMBlock,
)
from ..modeling.chatglm2 import (
get_chatglm_sequence_parallel_forward_fn,
get_flash_core_attention_forward,
get_jit_fused_glm_block_forward,
)
from ..modeling.jit import get_jit_fused_dropout_add_func
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = ['ChatGLMPolicy', 'ChatGLMModelPolicy', 'ChatGLMForConditionalGenerationPolicy']
class ChatGLMPolicy(Policy):
def config_sanity_check(self):
pass
def preprocess(self):
# Resize embedding
if self.shard_config.enable_tensor_parallelism:
vocab_size = self.model.config.padded_vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
return self.model
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMModel, CoreAttention, GLMBlock
policy = {}
use_sequence_parallel = self.shard_config.enable_sequence_parallelism
overlap = self.shard_config.enable_sequence_overlap
if self.shard_config.enable_tensor_parallelism:
policy[ChatGLMModel] = ModulePolicyDescription(attribute_replacement={},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="embedding.word_embeddings",
target_module=col_nn.VocabParallelEmbedding1D,
)
])
policy[GLMBlock] = ModulePolicyDescription(
attribute_replacement={
"self_attention.num_attention_heads_per_partition":
self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
"self_attention.projection_size":
(self.model.config.kv_channels * self.model.config.num_attention_heads) //
self.shard_config.tensor_parallel_size,
"self_attention.qkv_hidden_size":
(self.model.config.kv_channels * self.model.config.num_attention_heads * 3) //
self.shard_config.tensor_parallel_size,
"self_attention.core_attention.num_attention_heads_per_partition":
self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
"self_attention.core_attention.hidden_size_per_partition":
self.model.config.kv_channels * self.model.config.num_attention_heads //
self.shard_config.tensor_parallel_size,
},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(suffix="self_attention.query_key_value",
target_module=col_nn.Linear1D_Col,
kwargs={
'seq_parallel': use_sequence_parallel,
'seq_parallel_dim': 0,
'overlap': overlap
}),
SubModuleReplacementDescription(suffix="self_attention.dense",
target_module=col_nn.Linear1D_Row,
kwargs={
'seq_parallel': use_sequence_parallel,
'seq_parallel_dim': 0
}),
SubModuleReplacementDescription(
suffix="self_attention.core_attention.attention_dropout",
target_module=col_nn.DropoutForParallelInput,
),
])
# optimization configuration
if self.shard_config.enable_fused_normalization:
if not self.model.config.rmsnorm:
self.append_or_create_submodule_replacement(description=[
SubModuleReplacementDescription(suffix="input_layernorm", target_module=col_nn.FusedLayerNorm),
SubModuleReplacementDescription(suffix="post_attention_layernorm",
target_module=col_nn.FusedLayerNorm)
],
policy=policy,
target_key=GLMBlock)
if self.model.config.post_layer_norm:
self.append_or_create_submodule_replacement(description=[
SubModuleReplacementDescription(suffix="encoder.final_layernorm",
target_module=col_nn.FusedLayerNorm)
],
policy=policy,
target_key=ChatGLMModel)
else:
self.append_or_create_submodule_replacement(description=[
SubModuleReplacementDescription(suffix="input_layernorm", target_module=col_nn.FusedRMSNorm),
SubModuleReplacementDescription(suffix="post_attention_layernorm",
target_module=col_nn.FusedRMSNorm)
],
policy=policy,
target_key=GLMBlock)
if self.model.config.post_layer_norm:
self.append_or_create_submodule_replacement(description=[
SubModuleReplacementDescription(suffix="encoder.final_layernorm",
target_module=col_nn.FusedRMSNorm)
],
policy=policy,
target_key=ChatGLMModel)
# use flash attention
if self.shard_config.enable_flash_attention:
self.append_or_create_method_replacement(description={
'forward': get_flash_core_attention_forward(),
},
policy=policy,
target_key=CoreAttention)
# use sequence parallel
if use_sequence_parallel:
self.append_or_create_method_replacement(
description={'forward': get_chatglm_sequence_parallel_forward_fn(self.shard_config)},
policy=policy,
target_key=ChatGLMModel)
# use jit fused operator
if self.shard_config.enable_jit_fused:
self.append_or_create_method_replacement(description={
'forward': get_jit_fused_glm_block_forward(),
'dropout_add': get_jit_fused_dropout_add_func(),
},
policy=policy,
target_key=GLMBlock)
return policy
def postprocess(self):
return self.model
def get_held_layers(self) -> List[nn.Module]:
"""Get pipeline layers for current stage."""
assert self.pipeline_stage_manager is not None
if self.model.__class__.__name__ == 'ChatGLMModel':
module = self.model
else:
module = self.model.transformer
stage_manager = self.pipeline_stage_manager
held_layers = []
layers_per_stage = self.distribute_layers(module.num_layers, stage_manager.num_stages)
if stage_manager.is_first_stage():
held_layers.append(module.embedding)
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
held_layers.extend(module.encoder.layers[start_idx:end_idx])
if stage_manager.is_last_stage():
if module.encoder.post_layer_norm:
held_layers.append(module.encoder.final_layernorm)
# rotary_pos_emb is needed for all stages
held_layers.append(module.rotary_pos_emb)
return held_layers
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
"""If under pipeline parallel setting, replacing the original forward method of huggingface
to customized forward method, and add this changing to policy."""
if not self.pipeline_stage_manager:
raise ValueError("set_pipeline_forward method can only be called when pipeline parallel is enabled.")
stage_manager = self.pipeline_stage_manager
if self.model.__class__.__name__ == 'ChatGLMModel':
module = self.model
else:
module = self.model.transformer
layers_per_stage = Policy.distribute_layers(module.num_layers, stage_manager.num_stages)
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
method_replacement = {
'forward':
partial(new_forward,
stage_manager=stage_manager,
stage_index=stage_index,
shard_config=self.shard_config)
}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)
class ChatGLMModelPolicy(ChatGLMPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
policy = super().module_policy()
if self.pipeline_stage_manager is not None:
self.set_pipeline_forward(model_cls=ChatGLMModel,
new_forward=ChatGLMPipelineForwards.chatglm_model_forward,
policy=policy)
return policy
def get_held_layers(self) -> List[nn.Module]:
return super().get_held_layers()
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared params in ChatGLMModel."""
return []
class ChatGLMForConditionalGenerationPolicy(ChatGLMModelPolicy):
def module_policy(self):
policy = super().module_policy()
if self.pipeline_stage_manager is not None:
self.set_pipeline_forward(model_cls=ChatGLMForConditionalGeneration,
new_forward=ChatGLMPipelineForwards.chatglm_for_conditional_generation_forward,
policy=policy)
return policy
def get_held_layers(self) -> List[nn.Module]:
held_layers = super().get_held_layers()
if self.pipeline_stage_manager.is_last_stage():
held_layers.append(self.model.transformer.output_layer)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared params in ChatGLMForConditionalGenerationModel."""
return []