mirror of https://github.com/hpcaitech/ColossalAI
80 lines
3.4 KiB
Python
80 lines
3.4 KiB
Python
import torch
|
|
|
|
from colossalai.nn.layer.colossalai_layer import Embedding, Linear
|
|
from colossalai.utils import get_current_device
|
|
|
|
from .bias_dropout_add import bias_dropout_add_fused_train
|
|
from .bias_gelu import bias_gelu_impl
|
|
|
|
JIT_OPTIONS_SET = False
|
|
|
|
|
|
def set_jit_fusion_options():
|
|
"""Set PyTorch JIT layer fusion options.
|
|
"""
|
|
# LSG: the latest pytorch and CUDA versions may not support
|
|
# the following jit settings
|
|
global JIT_OPTIONS_SET
|
|
if JIT_OPTIONS_SET == False:
|
|
# flags required to enable jit fusion kernels
|
|
TORCH_MAJOR = int(torch.__version__.split('.')[0])
|
|
TORCH_MINOR = int(torch.__version__.split('.')[1])
|
|
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10):
|
|
# nvfuser
|
|
torch._C._jit_set_profiling_executor(True)
|
|
torch._C._jit_set_profiling_mode(True)
|
|
torch._C._jit_override_can_fuse_on_cpu(False)
|
|
torch._C._jit_override_can_fuse_on_gpu(False)
|
|
torch._C._jit_set_texpr_fuser_enabled(False)
|
|
torch._C._jit_set_nvfuser_enabled(True)
|
|
torch._C._debug_set_autodiff_subgraph_inlining(False)
|
|
else:
|
|
# legacy pytorch fuser
|
|
torch._C._jit_set_profiling_mode(False)
|
|
torch._C._jit_set_profiling_executor(False)
|
|
torch._C._jit_override_can_fuse_on_cpu(True)
|
|
torch._C._jit_override_can_fuse_on_gpu(True)
|
|
|
|
JIT_OPTIONS_SET = True
|
|
|
|
|
|
def warmup_jit_fusion(batch_size: int,
|
|
hidden_size: int,
|
|
seq_length: int = 512,
|
|
vocab_size: int = 32768,
|
|
dtype: torch.dtype = torch.float32):
|
|
""" Compile JIT functions before the main training steps """
|
|
|
|
embed = Embedding(vocab_size, hidden_size).to(get_current_device())
|
|
linear_1 = Linear(hidden_size, hidden_size * 4, skip_bias_add=True).to(get_current_device())
|
|
linear_2 = Linear(hidden_size * 4, hidden_size, skip_bias_add=True).to(get_current_device())
|
|
|
|
x = torch.randint(vocab_size, (batch_size, seq_length), dtype=torch.long, device=get_current_device())
|
|
x = embed(x)
|
|
y, y_bias = linear_1(x)
|
|
z, z_bias = linear_2(y)
|
|
# Warmup JIT fusions with the input grad_enable state of both forward
|
|
# prop and recomputation
|
|
for bias_grad, input_grad in zip([True, True], [False, True]):
|
|
for _ in range(10):
|
|
bias = torch.rand_like(y_bias, dtype=dtype, device=get_current_device())
|
|
input_ = torch.rand_like(y, dtype=dtype, device=get_current_device())
|
|
bias.requires_grad, input_.requires_grad = bias_grad, input_grad
|
|
bias_gelu_impl(input_, bias)
|
|
|
|
# Warmup fused bias+dropout+add
|
|
dropout_rate = 0.1
|
|
# Warmup JIT fusions with the input grad_enable state of both forward
|
|
# prop and recomputation
|
|
for input_grad, bias_grad, residual_grad in zip([False, True], [True, True], [True, True]):
|
|
for _ in range(10):
|
|
input_ = torch.rand_like(z, dtype=dtype, device=get_current_device())
|
|
residual = torch.rand_like(x, dtype=dtype, device=get_current_device())
|
|
bias = torch.rand_like(z_bias, dtype=dtype, device=get_current_device())
|
|
input_.requires_grad = input_grad
|
|
bias.requires_grad = bias_grad
|
|
residual.requires_grad = residual_grad
|
|
bias_dropout_add_fused_train(input_, bias, residual, dropout_rate)
|
|
|
|
torch.cuda.empty_cache()
|