ColossalAI/tests/test_zero_data_parallel/test_shard_param.py

50 lines
1.7 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from asyncio.log import logger
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.zero.shard_param import ShardParam
from colossalai.utils import free_port
from colossalai.logging import get_dist_logger, disable_existing_loggers
from tests.test_zero_data_parallel.common import Net, CONFIG
def run_shard_param_check(rank, world_size, port):
colossalai.launch(config=CONFIG,
rank=rank,
world_size=world_size,
host='localhost',
port=port,
backend='nccl')
logger = get_dist_logger()
model = Net()
# add an attribute as ca_attr to hijack the access to param.data
for _, param in model.named_parameters():
numel_ref = (param.numel() + world_size - 1) // world_size
param.ca_attr = ShardParam(param)
param.ca_attr.shard()
param_data = param.ca_attr.payload(torch.device('cpu'))
logger.info(f'shard {param_data.shape} {param_data}', ranks = [1])
assert(numel_ref == param_data.numel())
for _, param in model.named_parameters():
param.ca_attr.gather()
param_data = param.ca_attr.payload(torch.device('cpu'))
logger.info(f'gather {param_data.shape} {param_data}', ranks = [1])
disable_existing_loggers([logger])
@pytest.mark.dist
def test_run_shard_shape():
world_size = 2
run_func = partial(run_shard_param_check, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_run_shard_shape()