You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_zero/test_gemini/test_zerooptim_state_dict.py

85 lines
2.8 KiB

import pytest
import torch
import torch.distributed as dist
import colossalai
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils import set_seed
from colossalai.zero import GeminiDDP, GeminiOptimizer
from colossalai.zero.gemini.chunk import search_chunk_configuration
from tests.kit.model_zoo import model_zoo
PLACEMENT_CONFIGS = [
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.0}, # zero2
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 1.0}, # zero2-offload
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.5}, # zero2-offload-half
{"placement_policy": "auto"},
]
@parameterize("placement_config", PLACEMENT_CONFIGS)
@parameterize("keep_gathered", [True, False])
def exam_zero_optim_state_dict(placement_config, keep_gathered):
set_seed(431)
model_builder, data_gen_fn, output_transform_fn, *_ = next(
iter(model_zoo.get_sub_registry("transformers_gpt_lm").values())
)
model = model_builder()
set_seed(451)
world_size = torch.distributed.get_world_size()
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
config_dict[world_size]["chunk_size"] = 5000
config_dict[world_size]["keep_gathered"] = keep_gathered
model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True)
optimizer = HybridAdam(model.parameters())
optim = GeminiOptimizer(optimizer, model, initial_scale=32) # initialize the link between chunk16 and chunk32
set_seed(dist.get_rank() * 3 + 128)
model.train()
data = data_gen_fn()
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
optim.zero_grad()
outputs = model(**data)
outputs = output_transform_fn(outputs)
loss = next(iter(outputs.values())).sum()
optim.backward(loss)
optim.step()
optim_state_dict = optim.state_dict()
optim.load_state_dict(optim_state_dict)
new_state = optim.state_dict()["state"]
org_state = optim_state_dict["state"]
for k, v in org_state.items():
w = new_state[k]
for n, m in v.items():
if isinstance(m, torch.Tensor):
o = w[n]
assert torch.equal(m, o)
else:
assert m == w[n]
def run_dist(rank, world_size, port):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
exam_zero_optim_state_dict()
@pytest.mark.skip
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 4])
@rerun_if_address_is_in_use()
def test_zero_optim(world_size):
spawn(run_dist, world_size)
if __name__ == "__main__":
test_zero_optim(1)