You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_infer/test_kernels/triton/test_kvcache_copy.py

169 lines
6.3 KiB

import pytest
import torch
from packaging import version
from colossalai.kernel.triton import copy_k_to_blocked_cache, copy_kv_to_blocked_cache
from colossalai.utils import get_current_device
from tests.test_infer.test_kernels.triton.kernel_utils import (
generate_caches_and_block_tables_v2,
generate_caches_and_block_tables_v3,
mock_alloc_single_token,
)
try:
import triton # noqa
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
HEAD_DIM = 32
def prepare_data(
bsz,
num_kv_heads,
head_dim,
block_size,
max_num_blocks_per_seq,
same_context_len,
max_seq_len,
n=1,
device="cuda",
dtype=torch.float16,
use_new_kcache_layout=False,
):
assert max_seq_len > n, "max_seq_len must be greater than n"
past_kv_seq_lengths = (
torch.tensor([max_seq_len - n for _ in range(bsz)], dtype=torch.int32, device=device)
if same_context_len
else torch.randint(low=1, high=max_seq_len - n, size=(bsz,), dtype=torch.int32, device=device)
)
num_tokens = torch.sum(past_kv_seq_lengths).item()
kv_size = (num_tokens, 2 * num_kv_heads, head_dim)
kv_unpad = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
k_unpad, v_unpad = torch.split(kv_unpad, [num_kv_heads, num_kv_heads], dim=-2)
if use_new_kcache_layout:
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v3(
k_unpad, v_unpad, past_kv_seq_lengths, bsz, max_num_blocks_per_seq, block_size, dtype=dtype, device=device
)
else:
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, past_kv_seq_lengths, bsz, max_num_blocks_per_seq, block_size, dtype=dtype, device=device
)
block_tables = block_tables.to(device=device)
new_k = torch.randn((bsz, n, num_kv_heads, head_dim), dtype=dtype, device=device)
new_v = torch.randn((bsz, n, num_kv_heads, head_dim), dtype=dtype, device=device)
# mock allocating blocks for the new k/v and update block tables
for _ in range(n):
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
past_kv_seq_lengths += 1
return new_k, new_v, k_cache, v_cache, past_kv_seq_lengths, block_tables
@pytest.mark.skipif(not (HAS_TRITON and TRITON_CUDA_SUPPORT), reason="requires triton")
@pytest.mark.parametrize("bsz", [7, 32])
@pytest.mark.parametrize("block_size", [16, 32, 64])
@pytest.mark.parametrize("max_num_blocks_per_seq", [16])
@pytest.mark.parametrize("num_kv_heads", [16])
@pytest.mark.parametrize("same_context_len", [True, False])
@pytest.mark.parametrize("n_tokens", [1, 5])
@pytest.mark.parametrize("use_new_kcache_layout", [True, False])
def test_copy_kv_to_caches(
bsz: int,
block_size: int,
max_num_blocks_per_seq: int,
num_kv_heads: int,
same_context_len: bool,
n_tokens: int,
use_new_kcache_layout: bool,
):
torch.manual_seed(123)
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
max_seq_len = block_size * max_num_blocks_per_seq
dtype = torch.float16
device = get_current_device()
new_k, new_v, k_cache, v_cache, kv_seq_lengths, block_tables = prepare_data(
bsz,
num_kv_heads,
HEAD_DIM,
block_size,
max_num_blocks_per_seq,
same_context_len,
max_seq_len,
n_tokens,
device=device,
dtype=dtype,
use_new_kcache_layout=use_new_kcache_layout,
)
k_source = new_k.view(-1, new_k.size(-2), new_k.size(-1))
v_source = new_v.view(-1, new_v.size(-2), new_v.size(-1))
k_cache_copy = k_cache.detach().clone()
past_kv_seq_lengths = kv_seq_lengths - n_tokens
target_block_ids = block_tables[range(0, block_tables.size(0)), past_kv_seq_lengths // block_size]
offsets_in_block = past_kv_seq_lengths % block_size
# Copy k (or v) to k (or v) cache
copy_k_to_blocked_cache(
new_k, k_cache, kv_seq_lengths, block_tables, n=n_tokens, use_new_kcache_layout=use_new_kcache_layout
)
# Reshape target k from k cache to compare if matching with original tensor
# Mainly to handle cases of n_tokens > 1
k_target = []
for i in range(bsz):
block_table = block_tables[i]
curr_kv_len = past_kv_seq_lengths[i].item()
offset = offsets_in_block[i].item()
tokens_left = n_tokens
while tokens_left > 0:
tokens_to_fill = min(block_size - offset, tokens_left)
curr_block_id = block_table[curr_kv_len // block_size]
if use_new_kcache_layout:
k_target.append(k_cache[curr_block_id, :, :, offset : offset + tokens_to_fill, :])
else:
k_target.append(k_cache[curr_block_id, :, offset : offset + tokens_to_fill, :])
curr_kv_len += tokens_to_fill
tokens_left -= tokens_to_fill
offset = 0
if use_new_kcache_layout:
k_target = torch.concat(k_target, dim=2).permute(2, 0, 1, 3).contiguous()
k_target = k_target.reshape(bsz * n_tokens, num_kv_heads, HEAD_DIM)
else:
k_target = torch.concat(k_target, dim=1).transpose(0, 1).contiguous() # [bsz * n, num_kv_heads, head_dim]
assert k_target.shape == k_source.shape
assert torch.equal(k_target, k_source)
if n_tokens == 1:
# Copy k and v to k/v caches
k_cache = k_cache_copy
copy_kv_to_blocked_cache(
new_k, new_v, k_cache, v_cache, kv_seq_lengths, block_tables, use_new_kcache_layout=use_new_kcache_layout
)
if use_new_kcache_layout:
k_target = k_cache[target_block_ids, :, :, offsets_in_block, :]
k_target = k_target.contiguous().reshape(bsz * n_tokens, num_kv_heads, HEAD_DIM)
else:
k_target = k_cache[target_block_ids, :, offsets_in_block, :]
assert k_target.shape == k_source.shape
assert torch.equal(k_target, k_source)
v_target = v_cache[target_block_ids, :, offsets_in_block, :]
assert v_target.shape == v_source.shape
assert torch.equal(v_target, v_source)
if __name__ == "__main__":
test_copy_kv_to_caches(4, 32, 8, 16, True, n_tokens=1)