You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_infer/test_kernels/triton/test_decoding_attn.py

198 lines
7.4 KiB

import numpy as np
import pytest
import torch
from packaging import version
from colossalai.inference.utils import get_alibi_slopes
from colossalai.kernel.triton import flash_decoding_attention
from colossalai.utils import get_current_device
from tests.test_infer.test_kernels.triton.kernel_utils import (
convert_kv_unpad_to_padded,
create_attention_mask,
generate_caches_and_block_tables_v2,
generate_caches_and_block_tables_v3,
torch_attn_ref,
)
from tests.test_infer.test_kernels.triton.test_context_attn_unpad import generate_alibi_mask
try:
import triton # noqa
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
HEAD_DIM = 128
def numpy_allclose(x, y, rtol, atol):
x_numpy = x.detach().cpu().numpy()
y_numpy = y.detach().cpu().numpy()
np.testing.assert_allclose(x_numpy, y_numpy, rtol=rtol, atol=atol)
def prepare_data(
bsz: int,
num_attn_heads: int,
num_kv_heads: int,
head_dim: int,
same_context_len: bool,
q_len: int,
max_kv_seq_len: int,
dtype=torch.float16,
device="cuda",
):
# Use the provided maximum sequence length for each sequence when testing with teh same context length,
# otherwise generate random context lengths.
# returns
# q [bsz, num_attn_heads, q_len, head_dim]
# k_unpad/v_unpad [num_tokens, num_kv_heads, head_dim]
kv_lengths = (
torch.tensor([max_kv_seq_len for _ in range(bsz)], dtype=torch.int32, device=device)
if same_context_len
else torch.randint(low=1, high=max_kv_seq_len, size=(bsz,), dtype=torch.int32, device=device)
)
num_tokens = torch.sum(kv_lengths).item()
q_size = (bsz, q_len, num_attn_heads, head_dim)
q = torch.empty(size=q_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5).transpose(1, 2)
kv_size = (num_tokens, 2 * num_kv_heads, head_dim)
kv_unpad = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
k_unpad, v_unpad = torch.split(kv_unpad, [num_kv_heads, num_kv_heads], dim=-2)
return q, k_unpad, v_unpad, kv_lengths
@pytest.mark.skipif(not (HAS_TRITON and TRITON_CUDA_SUPPORT), reason="requires triton")
@pytest.mark.parametrize("bsz", [7, 16])
@pytest.mark.parametrize("block_size", [16, 32])
@pytest.mark.parametrize("max_num_blocks_per_seq", [8, 16])
@pytest.mark.parametrize("num_attn_heads", [16])
@pytest.mark.parametrize("kv_group_num", [1, 4])
@pytest.mark.parametrize("same_context_len", [True, False])
@pytest.mark.parametrize("q_len", [1, 5])
@pytest.mark.parametrize("use_alibi_slopes", [True, False])
@pytest.mark.parametrize("use_new_kcache_layout", [True, False])
def test_flash_decoding(
bsz: int,
block_size: int,
max_num_blocks_per_seq: int,
num_attn_heads: int,
kv_group_num: int,
same_context_len: bool,
q_len: int,
use_alibi_slopes: bool,
use_new_kcache_layout: bool,
):
if use_new_kcache_layout and use_alibi_slopes:
# TODO(yuanheng-zhao): Since the alibi kernel is pretty similar to the original one,
# the code (alibi kernel) will be refactored later to avoid code duplication, when
# the whole triton flow with new k cache layout has been supported and tested.
# And tests for the alibi kernel using new kcache layout will be added then.
pytest.skip("Alibi kernel does not support new kcache layout yet.")
torch.manual_seed(123)
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
num_kv_heads = num_attn_heads // kv_group_num
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
max_seq_len = block_size * max_num_blocks_per_seq
dtype = torch.float32
device = get_current_device()
if use_alibi_slopes:
alibi_slopes = get_alibi_slopes(num_attn_heads, device)
# Currently, alibi flash decoding does not support q_len>1.
q_len = 1
else:
alibi_slopes = None
q, k_unpad, v_unpad, kv_lengths = prepare_data(
bsz, num_attn_heads, num_kv_heads, HEAD_DIM, same_context_len, q_len, max_seq_len, dtype, device
)
# The maximum sequence length in the batch (if context lengths randomly generated)
max_kv_len_in_b = kv_lengths.max().item()
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_lengths, bsz, max_kv_len_in_b)
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_lengths, bsz, max_kv_len_in_b)
attention_mask = create_attention_mask(kv_lengths, bsz, q_len, max_kv_len_in_b, q.device)
if use_alibi_slopes:
alibi_mask = generate_alibi_mask(alibi_slopes, num_attn_heads, max_kv_len_in_b, q.device)
attention_mask = attention_mask + alibi_mask
if q_len == 1:
if len(attention_mask.size()) == 4:
attention_mask = attention_mask[:, :, -1:, :]
else:
attention_mask = attention_mask[:, -1:, :]
out_torch = torch_attn_ref(
q, k_torch, v_torch, attention_mask, bsz, q_len, max_kv_len_in_b, num_attn_heads, num_kv_heads, HEAD_DIM
)
if use_new_kcache_layout:
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v3(
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
else:
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)
# The maximum block length splitted on kv should be the kv cache block size
kv_max_split_num = (max_kv_len_in_b + block_size - 1) // block_size
output = torch.empty((bsz * q_len, num_attn_heads, HEAD_DIM), dtype=q.dtype, device=q.device)
mid_output = torch.empty(
size=(bsz * q_len, num_attn_heads, kv_max_split_num, HEAD_DIM), dtype=torch.float32, device=q.device
)
mid_output_lse = torch.empty(
size=(bsz * q_len, num_attn_heads, kv_max_split_num), dtype=torch.float32, device=q.device
)
sm_scale = 1.0 / (HEAD_DIM**0.5)
# Here we use different methods to hide the q_len dimension,
# refer to attention forward function in modeling.
if q_len > 1:
q = q.transpose(1, 2).contiguous() # [bsz, q_len, num_heads, head_dim]
q = q.view(-1, q.size(-2), q.size(-1)) # [bsz * q_len, num_heads, head_dim]
else:
q = q.squeeze(2)
assert q.shape == (bsz * q_len, num_attn_heads, HEAD_DIM)
out_triton = flash_decoding_attention(
q,
k_cache,
v_cache,
kv_lengths,
block_tables,
block_size,
max_kv_len_in_b,
output,
mid_output,
mid_output_lse,
alibi_slopes=alibi_slopes,
sm_scale=sm_scale,
kv_group_num=kv_group_num,
q_len=q_len,
use_new_kcache_layout=use_new_kcache_layout,
) # [bsz * q_len, num_heads, head_dim]
assert out_torch.shape == out_triton.shape
rtol = 1e-4
# After the shape becomes larger, some data elements are too small, leading to excessively large relative errors.
if use_alibi_slopes:
rtol = 100
numpy_allclose(out_torch, out_triton, atol=1e-3, rtol=rtol)
if __name__ == "__main__":
test_flash_decoding(16, 32, 32, 16, 1, True, 1, use_alibi_slopes=False, use_new_kcache_layout=True)