You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/fx/passes/experimental/adding_shape_consistency_pa...

109 lines
4.6 KiB

import builtins
import operator
from typing import List
import torch
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec
def apply(*args, **kwargs):
shape_consistency_manager = ShapeConsistencyManager()
return shape_consistency_manager.apply(*args, **kwargs)
def solution_annotation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh):
mod_graph = gm.graph
nodes = tuple(mod_graph.nodes)
# the dict to get origin sharding spec of node
origin_node_sharding_spec_dict = {}
for node_index, (node, strategy_index) in enumerate(zip(nodes, solution)):
strategies_vector = node.strategies_vector
setattr(node, "best_strategy", strategies_vector[strategy_index])
setattr(node, "sharding_spec", strategies_vector[strategy_index].output_sharding_spec)
origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].output_sharding_spec
# apply the sharding spec of parameters
for node in nodes:
if node.op == "call_module":
target_module = node.graph.owning_module.get_submodule(node.target)
origin_sharding_spec = ShardingSpec(device_mesh, target_module.weight.shape, {})
setattr(target_module.weight, "sharding_spec", origin_sharding_spec)
target_weight_sharding_spec = node.best_strategy.input_shardings[1]
target_module.weight.data = target_module.weight.data.permute((1, 0, 2, 3))
apply(target_module.weight, target_weight_sharding_spec)
target_module.weight.data = target_module.weight.data.permute((1, 0, 2, 3))
# the dict to get input sharding specs of user node
sharding_spec_convert_dict = {}
for index, node in enumerate(nodes):
target_sharding_specs = []
for user_node in node.strategies_vector.successor_nodes:
node_index = user_node.strategies_vector.predecessor_nodes.index(node)
target_sharding_spec = user_node.best_strategy.input_shardings[node_index]
target_sharding_specs.append(target_sharding_spec)
sharding_spec_convert_dict[index] = target_sharding_specs
# add above dicts into graph
for node in nodes:
if node.op != "placeholder":
with mod_graph.inserting_before(node):
input_specs_node = mod_graph.create_node("placeholder", target="sharding_spec_convert_dict")
origin_specs_node = mod_graph.create_node("placeholder", target="origin_node_sharding_spec_dict")
break
return sharding_spec_convert_dict, origin_node_sharding_spec_dict
def shape_consistency_pass(gm: torch.fx.GraphModule):
mod_graph = gm.graph
nodes = tuple(mod_graph.nodes)
input_dict_node = None
origin_dict_node = None
# mapping the node into the origin graph index
node_to_index_dict = {}
index = 0
for node in nodes:
if node.target == "sharding_spec_convert_dict":
input_dict_node = node
continue
if node.target == "origin_node_sharding_spec_dict":
origin_dict_node = node
continue
if not hasattr(node, "best_strategy"):
continue
node_to_index_dict[node] = index
index += 1
assert input_dict_node is not None
# add shape consistency apply function into graph
for node in nodes:
if not hasattr(node, "best_strategy"):
continue
with mod_graph.inserting_after(node):
origin_spec_node = mod_graph.create_node(
"call_function", operator.getitem, args=(origin_dict_node, node_to_index_dict[node])
)
with mod_graph.inserting_after(origin_spec_node):
set_sharding_spec_node = mod_graph.create_node(
"call_function", builtins.setattr, args=(node, "sharding_spec", origin_spec_node)
)
for user_node in node.strategies_vector.successor_nodes:
node_index = user_node.strategies_vector.predecessor_nodes.index(node)
with mod_graph.inserting_before(user_node):
input_specs_node = mod_graph.create_node(
"call_function", operator.getitem, args=(input_dict_node, node_to_index_dict[node])
)
with mod_graph.inserting_before(user_node):
sharding_spec_node = mod_graph.create_node(
"call_function", operator.getitem, args=(input_specs_node, node_index)
)
with mod_graph.inserting_before(user_node):
shape_consistency_node = mod_graph.create_node("call_function", apply, args=(node, sharding_spec_node))
return gm