ColossalAI/tests/test_gptq/test_gptq_linear.py

151 lines
4.9 KiB
Python

import math
import time
import numpy as np
import pytest
import torch
import torch.nn as nn
import transformers
from packaging import version
try:
import triton
import triton.language as tl
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
try:
from auto_gptq.modeling._utils import autogptq_post_init
from auto_gptq.utils.import_utils import dynamically_import_QuantLinear
from exllama_kernels import prepare_buffers, set_tuning_params
from colossalai.inference.quant.gptq import CaiQuantLinear
HAS_AUTO_GPTQ = True
except:
HAS_AUTO_GPTQ = False
print("please install AutoGPTQ from https://github.com/PanQiWei/AutoGPTQ")
import warnings
HAS_GPTQ_CUDA = False
try:
from colossalai.kernel.op_builder.gptq import GPTQBuilder
gptq_cuda = GPTQBuilder().load()
HAS_GPTQ_CUDA = True
except ImportError:
warnings.warn('CUDA gptq is not installed')
HAS_GPTQ_CUDA = False
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
max_inner_outer_dim = 1
max_input_len = 1
max_dq_buffer_size = 1
gptq_temp_dq_buffer = None
gptq_temp_state_buffer = None
def init_buffer(cai_linear, use_act_order=False):
global max_dq_buffer_size
global max_input_len
global max_dq_buffer_size
global max_inner_outer_dim
global gptq_temp_dq_buffer
global gptq_temp_state_buffer
max_dq_buffer_size = max(max_dq_buffer_size, cai_linear.qweight.numel() * 8)
if use_act_order:
max_inner_outer_dim = max(max_inner_outer_dim, cai_linear.infeatures, cai_linear.outfeatures)
if use_act_order:
max_input_len = 4096
# The temp_state buffer is required to reorder X in the act-order case.
# The temp_dq buffer is required to dequantize weights when using cuBLAS, typically for the prefill.
gptq_temp_state_buffer = torch.zeros((max_input_len, max_inner_outer_dim),
dtype=torch.float16,
device=torch.cuda.current_device())
gptq_temp_dq_buffer = torch.zeros((1, max_dq_buffer_size), dtype=torch.float16, device=torch.cuda.current_device())
gptq_cuda.prepare_buffers(torch.device(torch.cuda.current_device()), gptq_temp_state_buffer, gptq_temp_dq_buffer)
# Using the default from exllama repo here.
matmul_recons_thd = 8
matmul_fused_remap = False
matmul_no_half2 = False
gptq_cuda.set_tuning_params(matmul_recons_thd, matmul_fused_remap, matmul_no_half2)
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON or not HAS_AUTO_GPTQ,
reason="triton requires cuda version to be higher than 11.4 or not install auto-gptq")
def test_gptq_linear():
infeature = 1024
outfeature = 1024
group_size = 128
wbits = 4
inps = torch.ones(1, 1, infeature).to(torch.float16).to(torch.cuda.current_device())
batch_inps = torch.randn(1, 16, infeature).to(torch.float16).to(torch.cuda.current_device())
device = torch.device("cuda:0")
linear_class = dynamically_import_QuantLinear(use_triton=False, desc_act=False, group_size=group_size, bits=wbits)
linear = linear_class(
bits=4,
group_size=group_size,
infeatures=infeature,
outfeatures=outfeature,
bias=False,
)
torch.manual_seed(42)
linear.qweight = torch.randint(-100, 100, size=linear.qweight.shape, dtype=torch.int32)
linear.scales = linear.scales + 0.002
linear = linear.to(device)
cai_linear = CaiQuantLinear(wbits, group_size, infeature, outfeature, True)
cai_linear.qweight.data.copy_(linear.qweight)
cai_linear.scales = cai_linear.scales + 0.002
cai_linear = cai_linear.to(device)
linear = autogptq_post_init(linear, use_act_order=False)
max_inner_outer_dim = max(infeature, outfeature)
max_dq_buffer_size = linear.infeatures * linear.outfeatures
max_input_len = 2048
buffers = {
"temp_state": torch.zeros((max_input_len, max_inner_outer_dim), dtype=torch.float16, device=device),
"temp_dq": torch.zeros((1, max_dq_buffer_size), dtype=torch.float16, device=device)
}
prepare_buffers(device, buffers["temp_state"], buffers["temp_dq"])
# Using the default from exllama repo here.
matmul_recons_thd = 8
matmul_fused_remap = False
matmul_no_half2 = False
set_tuning_params(matmul_recons_thd, matmul_fused_remap, matmul_no_half2)
with torch.no_grad():
gptq_out = linear(inps)
batch_gptq_out = linear(batch_inps)
torch.cuda.synchronize()
cai_out = cai_linear(inps)
torch.cuda.synchronize()
batch_cai_out = cai_linear(batch_inps)
torch.cuda.synchronize()
assert torch.allclose(cai_out, gptq_out, rtol=1e-01, atol=1e-01)
assert torch.allclose(batch_cai_out, batch_gptq_out, rtol=1e-01, atol=1e-01)
if __name__ == "__main__":
test_gptq_linear()