mirror of https://github.com/hpcaitech/ColossalAI
153 lines
4.9 KiB
Python
153 lines
4.9 KiB
Python
import time
|
|
from typing import Any
|
|
|
|
import torch
|
|
import torch.fx
|
|
|
|
import colossalai
|
|
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
|
from colossalai.fx.graph_module import ColoGraphModule
|
|
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
|
from colossalai.fx.profiler import parameter_size
|
|
from colossalai.utils import free_port
|
|
|
|
if AUTOCHUNK_AVAILABLE:
|
|
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
|
from colossalai.fx.profiler import MetaTensor
|
|
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
|
|
|
|
|
def _benchmark_autochunk_unet_gm(
|
|
model: Any,
|
|
data: tuple,
|
|
max_memory: int = None,
|
|
) -> None:
|
|
model = model.cuda().eval()
|
|
|
|
# build model and input
|
|
meta_args, concrete_args = data
|
|
if concrete_args is None:
|
|
concrete_args = {}
|
|
|
|
# trace the meta graph and setup codegen
|
|
meta_graph = symbolic_trace(
|
|
model,
|
|
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
|
|
concrete_args={k: v for k, v in concrete_args},
|
|
)
|
|
interp = MetaInfoProp(meta_graph)
|
|
meta_tensors = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
|
|
meta_tensors = [MetaTensor(i, fake_device="cpu") if isinstance(i, torch.Tensor) else i for i in meta_tensors]
|
|
interp.propagate(*meta_tensors)
|
|
codegen = AutoChunkCodeGen(
|
|
meta_graph,
|
|
max_memory=max_memory,
|
|
)
|
|
|
|
# trace and recompile
|
|
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
|
graph = ColoTracer().trace(
|
|
model.cuda().eval(),
|
|
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
|
|
concrete_args={k: v for k, v in concrete_args},
|
|
)
|
|
graph.set_codegen(codegen)
|
|
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
|
gm.recompile()
|
|
|
|
# init inputs
|
|
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
|
|
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
|
|
model.cuda().eval()
|
|
|
|
# bench
|
|
para_mem = float(parameter_size(model)) / 1024**2
|
|
act_mem = _benchmark_memory(gm, inputs)
|
|
speed = _benchmark_speed(gm, inputs)
|
|
print(
|
|
"unet autochunk, time: %.4fs, act mem: %.2fMB, para mem: %.2fMB, all mem: %.2fMB"
|
|
% (speed, act_mem, para_mem, act_mem + para_mem)
|
|
)
|
|
|
|
|
|
def _benchmark_autochunk_unet_origin(
|
|
model: Any,
|
|
data: tuple,
|
|
) -> None:
|
|
# build model and input
|
|
meta_args, concrete_args = data
|
|
if concrete_args is None:
|
|
concrete_args = {}
|
|
|
|
# init inputs
|
|
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
|
|
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
|
|
model.cuda().eval()
|
|
|
|
# bench
|
|
para_mem = float(parameter_size(model)) / 1024**2
|
|
act_mem = _benchmark_memory(model, inputs)
|
|
speed = _benchmark_speed(model, inputs)
|
|
print(
|
|
"unet origin, time: %.4fs, act mem: %.2fMB, para mem: %.2fMB, all mem: %.2fMB"
|
|
% (speed, act_mem, para_mem, act_mem + para_mem)
|
|
)
|
|
return act_mem
|
|
|
|
|
|
def _benchmark_memory(model, inputs):
|
|
with torch.no_grad():
|
|
torch.cuda.reset_peak_memory_stats()
|
|
now_mem = float(torch.cuda.memory_allocated()) / 1024**2
|
|
model(*inputs)
|
|
new_max_mem = float(torch.cuda.max_memory_allocated()) / 1024**2
|
|
return new_max_mem - now_mem
|
|
|
|
|
|
def _benchmark_speed(model, inputs, loop=5):
|
|
with torch.no_grad():
|
|
for _ in range(loop // 2 + 1):
|
|
model(*inputs)
|
|
torch.cuda.synchronize()
|
|
time1 = time.time()
|
|
for _ in range(loop):
|
|
model(*inputs)
|
|
torch.cuda.synchronize()
|
|
time2 = time.time()
|
|
return (time2 - time1) / loop
|
|
|
|
|
|
def benchmark_autochunk_unet(batch=1, height=448, width=448):
|
|
from test_autochunk_unet import UNet2DModel, get_data
|
|
|
|
model = UNet2DModel()
|
|
latent_shape = (batch, 3, height // 7, width // 7)
|
|
|
|
print("\nbatch: %d, height: %d, width: %d" % (batch, height, width))
|
|
max_mem = _benchmark_autochunk_unet_origin(model, get_data(latent_shape))
|
|
for ratio in [0.5, 0.4, 0.3, 0.2]:
|
|
try:
|
|
_benchmark_autochunk_unet_gm(model, get_data(latent_shape), max_mem * ratio)
|
|
except RuntimeError as e:
|
|
if e.args[0] == "Search failed. Try a larger memory threshold.":
|
|
break
|
|
except Exception as e:
|
|
raise e
|
|
_benchmark_autochunk_unet_gm(model, get_data(latent_shape), None)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# launch colossalai
|
|
colossalai.launch(
|
|
config={},
|
|
rank=0,
|
|
world_size=1,
|
|
host="localhost",
|
|
port=free_port(),
|
|
backend="nccl",
|
|
)
|
|
benchmark_autochunk_unet(batch=1, height=224 * 3, width=224 * 3)
|
|
benchmark_autochunk_unet(batch=1, height=224 * 4, width=224 * 4)
|
|
benchmark_autochunk_unet(batch=1, height=224 * 5, width=224 * 5)
|
|
benchmark_autochunk_unet(batch=1, height=224 * 6, width=224 * 6)
|