mirror of https://github.com/hpcaitech/ColossalAI
97 lines
3.7 KiB
Python
97 lines
3.7 KiB
Python
from ..base_extension import _Extension
|
|
|
|
|
|
class FlashAttentionDaoCudaExtension(_Extension):
|
|
def __init__(self):
|
|
super().__init__(name="flash_attention_dao_cuda", support_aot=False, support_jit=False, priority=10)
|
|
|
|
def is_available(self) -> bool:
|
|
# cuda extension can only be built if cuda is available
|
|
try:
|
|
import torch
|
|
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_kvpacked_func # noqa
|
|
from flash_attn.bert_padding import index_first_axis, pad_input # noqa
|
|
|
|
cuda_available = torch.cuda.is_available()
|
|
except:
|
|
cuda_available = False
|
|
return cuda_available
|
|
|
|
def assert_compatible(self) -> bool:
|
|
pass
|
|
|
|
def build_aot(self) -> None:
|
|
raise NotImplementedError(
|
|
"We rely on the third-party flash-attn library for flash attention (https://github.com/Dao-AILab/flash-attention). Please install flash-attn via 'pip install flash-attn --no-build-isolation'."
|
|
)
|
|
|
|
def build_jit(self) -> None:
|
|
raise NotImplementedError(
|
|
"We rely on the third-party flash-attn library for flash attention (https://github.com/Dao-AILab/flash-attention). Please install flash-attn via 'pip install flash-attn --no-build-isolation'"
|
|
)
|
|
|
|
def load(self):
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from einops import rearrange
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_kvpacked_func
|
|
from flash_attn.bert_padding import index_first_axis, pad_input
|
|
|
|
def _unpad_input(hidden_states: torch.Tensor, indices: torch.Tensor):
|
|
return index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices)
|
|
|
|
def flash_attention(
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
dropout_p: float = 0.0,
|
|
scale: Optional[float] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
is_causal: bool = False,
|
|
cu_seqlens_q: Optional[torch.Tensor] = None,
|
|
cu_seqlens_kv: Optional[torch.Tensor] = None,
|
|
max_seqlen_q: Optional[int] = None,
|
|
max_seqlen_kv: Optional[int] = None,
|
|
q_indices: Optional[torch.Tensor] = None,
|
|
kv_indices: Optional[torch.Tensor] = None,
|
|
):
|
|
# [B, N, S, D] -> [B, S, N, D]
|
|
q = q.transpose(1, 2)
|
|
k = k.transpose(1, 2)
|
|
v = v.transpose(1, 2)
|
|
b, s_q = q.shape[:2]
|
|
if cu_seqlens_q is not None:
|
|
# padded / padded causal
|
|
# unpad input: [B, S, N, D] -> [T, N, D]
|
|
q = _unpad_input(q, q_indices)
|
|
kv = _unpad_input(torch.stack(tensors=(k, v), dim=2), kv_indices)
|
|
attn_output = flash_attn_varlen_kvpacked_func(
|
|
q,
|
|
kv,
|
|
cu_seqlens_q,
|
|
cu_seqlens_kv,
|
|
max_seqlen_q,
|
|
max_seqlen_kv,
|
|
dropout_p=dropout_p,
|
|
softmax_scale=scale,
|
|
causal=is_causal,
|
|
)
|
|
# pad output: [T, N, D] -> [B, S, N, D]
|
|
attn_output = pad_input(attn_output, q_indices, b, s_q)
|
|
else:
|
|
# causal / no attn mask
|
|
attn_output = flash_attn_func(
|
|
q,
|
|
k,
|
|
v,
|
|
dropout_p=dropout_p,
|
|
softmax_scale=scale,
|
|
causal=is_causal,
|
|
)
|
|
# [B, S, N, D] -> [B, N, S, D]
|
|
return attn_output.transpose(1, 2)
|
|
|
|
return flash_attention
|