ColossalAI/extensions/csrc/arm/cpu_adam_arm.h

202 lines
5.8 KiB
C++

#pragma once
#include <ATen/ATen.h>
#include <torch/extension.h>
#include <cmath>
#define ROUND_DOWN(size, step) ((size) & ~((step)-1))
#define TILE (128 * 1024 * 1024)
#if defined(__aarch64__)
#include <arm_neon.h>
#define SIMD_WIDTH 4
inline float32x4_t simd_load_offset(const void *ptr, at::ScalarType dtype,
size_t offset) {
switch (dtype) {
case at::ScalarType::Float: {
auto ptr_f = reinterpret_cast<const float32_t *>(ptr);
return vld1q_f32(ptr_f + offset);
}
case at::ScalarType::Half: {
auto ptr_h = reinterpret_cast<const float16_t *>(ptr);
return vcvt_f32_f16(vld1_f16(ptr_h + offset));
}
// case at::ScalarType::BFloat16: {
// auto ptr_b = reinterpret_cast<const bfloat16_t *>(ptr);
// return vcvt_f32_bf16(vld1_bf16(ptr_b + offset));
// }
default:
AT_ERROR("Unsupported dtype");
break;
}
}
inline float32x4_t simd_load(void const *ptr, at::ScalarType dtype) {
return simd_load_offset(ptr, dtype, 0);
}
inline void simd_store_offset(void *ptr, at::ScalarType dtype, float32x4_t data,
size_t offset) {
switch (dtype) {
case at::ScalarType::Float: {
auto ptr_f = reinterpret_cast<float32_t *>(ptr);
vst1q_f32(ptr_f + offset, data);
break;
}
case at::ScalarType::Half: {
auto ptr_h = reinterpret_cast<float16_t *>(ptr);
vst1_f16(ptr_h + offset, vcvt_f16_f32(data));
break;
}
// case at::ScalarType::BFloat16: {
// auto ptr_b = reinterpret_cast<bfloat16_t *>(ptr);
// vst1_bf16(ptr_b + offset, vcvt_bf16_f32(data));
// break;
// }
default:
AT_ERROR("Unsupported dtype");
break;
}
}
inline void simd_store(void *ptr, at::ScalarType dtype, float32x4_t data) {
return simd_store_offset(ptr, dtype, data, 0);
}
inline float32x4_t simd_set(float value) {
auto val = static_cast<float32_t>(value);
return vdupq_n_f32(val);
}
#endif
inline float scalar_load_offset(const void *ptr, at::ScalarType dtype,
size_t offset) {
switch (dtype) {
case at::ScalarType::Float:
return *(reinterpret_cast<const float *>(ptr) + offset);
case at::ScalarType::Half:
return static_cast<float>(
*(reinterpret_cast<const at::Half *>(ptr) + offset));
// case at::ScalarType::BFloat16:
// return static_cast<float>(
// *(reinterpret_cast<const at::BFloat16 *>(ptr) + offset));
default:
AT_ERROR("Unsupported dtype");
break;
}
}
inline void scalar_store_offset(void *ptr, at::ScalarType dtype, float data,
size_t offset) {
switch (dtype) {
case at::ScalarType::Float:
*(reinterpret_cast<float *>(ptr) + offset) = data;
break;
case at::ScalarType::Half:
*(reinterpret_cast<at::Half *>(ptr) + offset) = data;
break;
// case at::ScalarType::BFloat16:
// *(reinterpret_cast<at::BFloat16 *>(ptr) + offset) = data;
break;
default:
AT_ERROR("Unsupported dtype");
break;
}
}
inline void *scalar_seek_offset(void *ptr, at::ScalarType dtype,
size_t offset) {
switch (dtype) {
case at::ScalarType::Float:
return reinterpret_cast<float *>(ptr) + offset;
case at::ScalarType::Half:
return reinterpret_cast<at::Half *>(ptr) + offset;
// case at::ScalarType::BFloat16:
// return reinterpret_cast<at::BFloat16 *>(ptr) + offset;
default:
AT_ERROR("Unsupported dtype");
break;
}
}
#define STEP(SPAN) \
void Step_##SPAN(void *_params, void *grads, void *_exp_avg, \
void *_exp_avg_sq, size_t _param_size, \
at::ScalarType param_dtype, at::ScalarType grad_dtype, \
at::ScalarType exp_avg_dtype, \
at::ScalarType exp_avg_sq_dtype, float loss_scale = -1);
class AdamOptimizer {
private:
float _alpha;
float _betta1;
float _betta2;
float _eps;
float _weight_decay;
float _betta1_t;
float _betta2_t;
size_t _step;
float _bias_correction1;
float _bias_correction2;
bool _adamw_mode;
public:
AdamOptimizer(float alpha = 1e-3, float betta1 = 0.9, float betta2 = 0.999,
float eps = 1e-8, float weight_decay = 0,
bool adamw_mode = true)
: _alpha(alpha),
_betta1(betta1),
_betta2(betta2),
_eps(eps),
_weight_decay(weight_decay),
_betta1_t(1.0),
_betta2_t(1.0),
_step(0),
_adamw_mode(adamw_mode) {}
~AdamOptimizer() {}
STEP(1)
STEP(4)
STEP(8)
inline void IncrementStep(size_t step, float beta1, float beta2) {
if (beta1 != _betta1 || beta2 != _betta2) {
_step = step;
_betta1 = beta1;
_betta2 = beta2;
_betta1_t = std::pow(_betta1, step);
_betta2_t = std::pow(_betta2, step);
} else {
_step++;
if (_step != step) {
_betta1_t = std::pow(_betta1, step);
_betta2_t = std::pow(_betta2, step);
_step = step;
} else {
_betta1_t *= _betta1;
_betta2_t *= _betta2;
}
}
}
inline void update_state(float lr, float epsilon, float weight_decay,
bool bias_correction) {
_alpha = lr;
_eps = epsilon;
_weight_decay = weight_decay;
_bias_correction1 = 1.0f;
_bias_correction2 = 1.0f;
if (bias_correction == 1) {
_bias_correction1 = 1 - _betta1_t;
_bias_correction2 = 1 / sqrt(1 - _betta2_t);
}
}
void step(size_t step, float lr, float beta1, float beta2, float epsilon,
float weight_decay, bool bias_correction, torch::Tensor &params,
torch::Tensor &grads, torch::Tensor &exp_avg,
torch::Tensor &exp_avg_sq, float loss_scale);
};