mirror of https://github.com/hpcaitech/ColossalAI
130 lines
4.9 KiB
Python
130 lines
4.9 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
from typing import Optional
|
|
|
|
import torch
|
|
|
|
from colossalai.accelerator import get_accelerator
|
|
|
|
from .base_grad_scaler import BaseGradScaler
|
|
|
|
__all__ = ["DynamicGradScaler"]
|
|
|
|
|
|
class DynamicGradScaler(BaseGradScaler):
|
|
"""A gradient scaler which uses dynamic loss scale
|
|
|
|
Args:
|
|
initial_scale (float): the initial loss scale, defaults to 2**16
|
|
growth_factor (float): the multiplication factor for increasing loss scale, defaults to 2
|
|
backoff_factor (float): the multiplication factor for decreasing loss scale, defaults to 0.5
|
|
growth_interval (int): the number of steps to increase loss scale when no overflow occurs, defaults to 1000
|
|
min_scale (float): the minimum loss scale, defaults to None
|
|
max_scale (float): the maximum loss scale, defaults to None
|
|
hysteresis (int): the number of overflows before decreasing loss scale, defaults to 2
|
|
verbose (bool): whether to log messages, defaults to False
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
initial_scale: float = 2**16,
|
|
growth_factor: float = 2,
|
|
backoff_factor: float = 0.5,
|
|
growth_interval: int = 1000,
|
|
min_scale: Optional[float] = None,
|
|
max_scale: Optional[float] = None,
|
|
hysteresis: int = 2,
|
|
verbose: bool = False,
|
|
):
|
|
a = get_accelerator()
|
|
a.device_count()
|
|
super().__init__(initial_scale, verbose)
|
|
if min_scale:
|
|
self._min_scale = torch.tensor(
|
|
[min_scale], device=get_accelerator().get_current_device(), dtype=torch.float
|
|
)
|
|
else:
|
|
self._min_scale = None
|
|
|
|
if max_scale:
|
|
self._max_scale = torch.tensor(
|
|
[max_scale], device=get_accelerator().get_current_device(), dtype=torch.float
|
|
)
|
|
else:
|
|
self._max_scale = None
|
|
|
|
self._growth_factor = growth_factor
|
|
self._backoff_factor = backoff_factor
|
|
self._growth_interval = growth_interval
|
|
self._growth_step = 0
|
|
self._hysteresis = hysteresis
|
|
self._hysteresis_step = 0
|
|
self._sanity_checks()
|
|
|
|
def _sanity_checks(self) -> None:
|
|
"""Check if the arguments are correct."""
|
|
|
|
if self._min_scale:
|
|
assert self._min_scale > 0, "The minimum gradient scale cannot be zero or negative"
|
|
assert self._min_scale <= self._scale, "The minimum gradient scale cannot be greater than the current scale"
|
|
if self._max_scale:
|
|
assert self._max_scale > 0, "The maximum gradient scale cannot be zero or negative"
|
|
assert self._max_scale >= self._scale, "The maximum gradient scale cannot be smaller than the current scale"
|
|
assert self._growth_factor > 1, "The growth factor cannot be equal or smaller than 1"
|
|
assert 0 < self._backoff_factor < 1, "The backoff factor must be between 0 and 1"
|
|
assert self._hysteresis >= 0, "The hysteresis cannot be negative"
|
|
|
|
def update(self, overflow: bool) -> None:
|
|
"""Update the loss scale.
|
|
|
|
Args:
|
|
overflow (bool): whether overflow occurs
|
|
"""
|
|
if overflow:
|
|
self._hysteresis_step += 1
|
|
self._growth_step = 0
|
|
|
|
if self._hysteresis_step >= self._hysteresis:
|
|
self._backoff_scale()
|
|
self.log(f"Overflow occurs, the loss scale is adjusted to {self.scale.item()}", ranks=[0])
|
|
else:
|
|
self._growth_step += 1
|
|
if self._growth_step == self._growth_interval:
|
|
self._growth_step = 0
|
|
self._hysteresis_step = 0
|
|
self._grow_scale()
|
|
self.log(
|
|
f"No overflow for consecutive {self._growth_interval} steps, "
|
|
f"the loss scale is adjusted to {self.scale.item()}",
|
|
ranks=[0],
|
|
)
|
|
|
|
def _backoff_scale(self) -> None:
|
|
"""Decrease the loss scale"""
|
|
|
|
self._scale = self._scale * self._backoff_factor
|
|
if self._min_scale:
|
|
self._scale = torch.max(self._scale, self._min_scale)
|
|
|
|
def _grow_scale(self) -> None:
|
|
"""Increase the loss scale"""
|
|
|
|
self._scale = self._scale * self._growth_factor
|
|
if self._max_scale:
|
|
self._scale = torch.min(self._scale, self._max_scale)
|
|
|
|
def state_dict(self):
|
|
state_dict = dict()
|
|
state_dict["scale"] = self._scale
|
|
state_dict["growth_factor"] = self._growth_factor
|
|
state_dict["backoff_factor"] = self._backoff_factor
|
|
state_dict["hysteresis"] = self._hysteresis
|
|
return state_dict
|
|
|
|
def load_state_dict(self, state_dict):
|
|
self._scale = state_dict["scale"].to(get_accelerator().get_current_device())
|
|
self._growth_factor = state_dict["growth_factor"]
|
|
self._backoff_factor = state_dict["backoff_factor"]
|
|
self._hysteresis = state_dict["hysteresis"]
|