ColossalAI/colossalai/auto_parallel/meta_profiler/shard_metainfo.py

132 lines
4.7 KiB
Python

from typing import Callable, List
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
OperationDataType,
ShardingStrategy,
StrategiesVector,
TrainCycleItem,
)
from colossalai.tensor.sharding_spec import ShardingSpec
from .constants import INPLACE_MODULE, INPLACE_OPS, NO_SAVE_ACTIVATION
from .registry import meta_register
__all__ = ['ShardMetaInfo']
class ShardMetaInfo:
"""ShardMetaInfo class
This class is used to store meta info based on sharding strategy and the given
target function.
"""
def __init__(self, strategy: ShardingStrategy = None, target: Callable = None) -> None:
# compute cost of forward and backward computation
self.compute_cost: TrainCycleItem
# compute memory cost of forward and backward phase
self.memory_cost: TrainCycleItem
# list of input tensors
self.fwd_in: List[torch.Tensor]
# list of buffer tensors
self.fwd_buffer: List[torch.Tensor]
# list of output tensors
self.fwd_out: List[torch.Tensor]
# sharding strategy
self._strategy = strategy
# target function
self._target = target
# compute shard_metainfo if possible
if self._strategy is not None and self._target is not None:
self.compute_shard_metainfo()
@property
def strategy(self) -> ShardingStrategy:
return self._strategy
@property
def target(self) -> Callable:
return self._target
@strategy.setter
def strategy(self, strategy: ShardingStrategy) -> None:
self._strategy = strategy
if self._strategy is not None and self._target is not None:
self.compute_shard_metainfo()
@target.setter
def target(self, target: Callable) -> None:
self._target = target
if self._strategy is not None and self._target is not None:
self.compute_shard_metainfo()
def compute_sharded_opdata(self, operation_data: OperationData, sharding_spec: ShardingSpec):
"""
Compute sharded opdata based on the given data and sharding spec.
"""
if isinstance(sharding_spec, ShardingSpec):
op_data = OperationData(name=operation_data.name,
data=torch.zeros(sharding_spec.get_sharded_shape_per_device(), device="meta"),
type=operation_data.type,
logical_shape=operation_data.logical_shape)
elif isinstance(sharding_spec, (list, tuple)):
data = operation_data.data
assert isinstance(data, (list, tuple)), f"Data Should be list or tuple, but got {type(data)}."
assert len(data) == len(sharding_spec), f"Length of data and sharding spec should be the same."
sharded_data = []
for d, s in zip(data, sharding_spec):
sharded_data.append(torch.zeros(s.get_sharded_shape_per_device(), device="meta"))
op_data = OperationData(name=operation_data.name, data=sharded_data, type=operation_data.type)
else:
raise ValueError(f"Sharding spec should be ShardingSpec or list, but got {type(sharding_spec)}.")
return op_data
def compute_shard_metainfo(self):
"""
Compute meta info based on sharding strategy and the given target function.
"""
assert meta_register.has(self._target.__class__) or meta_register.has(self._target), \
f"Meta info for {self._target} is not registered."
if meta_register.has(self._target.__class__):
# module
meta_func = meta_register.get(self._target.__class__)
# check whether the target in the list that we don't need to save activation
save_fwd_in = self._target.__class__ not in NO_SAVE_ACTIVATION
else:
# function
meta_func = meta_register.get(self._target)
# check whether the target in the list that we don't need to save activation
save_fwd_in = self._target.__class__ not in NO_SAVE_ACTIVATION
# construct args for meta_func
args = [self.compute_sharded_opdata(k, v) for k, v in self._strategy.sharding_specs.items()]
# construct kwargs
if self.target in INPLACE_MODULE:
kwargs = {'inplace': self.target.inplace}
elif self.target in INPLACE_OPS:
kwargs = {'inplace': True}
else:
kwargs = {'inplace': False}
# compute metainfo with meta_func
self.compute_cost, self.memory_cost, self.fwd_in, self.fwd_buffer, self.fwd_out = meta_func(*args, **kwargs)
# process corner case for NO_SAVE_ACTIVATION
if not save_fwd_in:
self.fwd_in = []