You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_zero_data_parallel/test_zero_dev_3.py

120 lines
3.3 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import copy
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.logging import disable_existing_loggers
from colossalai.utils import checkpoint, free_port
from colossalai.zero.sharded_model import ShardedModel
from common import Net, check_grads, check_params, check_params
def checkpoint_wrapper(module, enable=True):
if enable:
module.forward = partial(checkpoint, module.forward)
return module
class Net(nn.Module):
def __init__(self, checkpoint=False) -> None:
super().__init__()
self.fc1 = nn.Linear(5, 5)
self.fc2 = nn.Linear(5, 5)
self.fc3 = nn.Linear(5, 1)
if checkpoint:
self.fc1 = checkpoint_wrapper(self.fc1)
self.layers = [
self.fc1,
self.fc2,
self.fc1,
self.fc2,
self.fc3
]
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
def run_step(model, optimizer, x, enable_autocast=False):
model.train()
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=enable_autocast):
y = model(x)
loss = y.sum()
loss = loss.float()
loss.backward()
optimizer.step()
def decode_booleans(intval, bits):
res = []
for bit in range(bits):
mask = 1 << bit
res.append((intval & mask) == mask)
return res
def check_config(checkpoint=False, fp16=False, offload=False):
model = Net(checkpoint=checkpoint).cuda()
zero_model = copy.deepcopy(model)
offload_config = {}
if offload:
offload_config['device'] = 'cpu'
zero_model = zero_model.cpu()
zero_model = ShardedModel(zero_model, mixed_precision=fp16, offload_config=offload_config)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1e-3)
for _ in range(5):
x = torch.rand(2, 5).cuda()
run_step(model, optimizer, x, enable_autocast=fp16)
run_step(zero_model, zero_optimizer, x, enable_autocast=fp16)
check_grads(model, zero_model)
check_params(model, zero_model)
for _ in range(5):
x = torch.rand(2, 5).cuda()
run_step(model, optimizer, x, enable_autocast=False)
run_step(zero_model, zero_optimizer, x, enable_autocast=False)
check_grads(model, zero_model, loose=True)
check_params(model, zero_model, loose=True)
def run_dist(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={},
rank=rank,
world_size=world_size,
host='localhost',
port=port,
backend='nccl')
args = ['checkpoint', 'fp16', 'offload']
def pack_args(i):
booleans = decode_booleans(i, len(args))
return {arg: booleans[idx] for idx, arg in enumerate(args)}
for j in range(2 ** len(args)):
kwargs = pack_args(j)
print(kwargs)
check_config(**kwargs)
@pytest.mark.dist
def test_zero_level_3():
world_size = 1
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_zero_level_3()