Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

54 lines
1.8 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.utils import get_current_device, synchronize
def ring_forward(tensor_send_next: torch.Tensor, parallel_mode: ParallelMode):
"""Sends a tensor to the next member and recieves a tensor from the previous member.
This function returns the recieved tensor from the previous member.
:param tensor_send_next: Tensor sent to next member
:param parallel_mode: Parallel group mode used in this communication
:type tensor_send_next: :class:`torch.Tensor`
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:return: The tensor recieved from the previous
:rtype: :class:`torch.Tensor`
"""
buffer_shape = tensor_send_next.size()
ops = []
current_rank = gpc.get_global_rank()
tensor_recv_prev = torch.empty(buffer_shape,
requires_grad=True,
device=get_current_device(),
dtype=tensor_send_next.dtype)
# send to next rank
send_next_op = torch.distributed.P2POp(
torch.distributed.isend, tensor_send_next,
gpc.get_next_global_rank(parallel_mode))
ops.append(send_next_op)
# receive from prev rank
recv_prev_op = torch.distributed.P2POp(
torch.distributed.irecv, tensor_recv_prev,
gpc.get_prev_global_rank(parallel_mode))
ops.append(recv_prev_op)
if current_rank % 2 == 0:
ops = ops[::-1]
reqs = torch.distributed.batch_isend_irecv(ops)
for req in reqs:
req.wait()
# To protect against race condition when using batch_isend_irecv().
synchronize()
return tensor_recv_prev