mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
78 lines
2.6 KiB
78 lines
2.6 KiB
#!/usr/bin/env python |
|
# -*- encoding: utf-8 -*- |
|
|
|
import os |
|
from functools import partial |
|
from pathlib import Path |
|
|
|
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
import torch.multiprocessing as mp |
|
from torch.utils.data import DataLoader |
|
|
|
import colossalai |
|
from colossalai.builder import build_dataset, build_transform |
|
from torchvision import transforms |
|
from colossalai.context import ParallelMode, Config |
|
from colossalai.core import global_context as gpc |
|
from colossalai.utils import get_dataloader, free_port |
|
from colossalai.testing import rerun_on_exception |
|
|
|
CONFIG = Config( |
|
dict( |
|
train_data=dict(dataset=dict( |
|
type='CIFAR10', |
|
root=Path(os.environ['DATA']), |
|
train=True, |
|
download=True, |
|
), |
|
dataloader=dict(batch_size=8,), |
|
transform_pipeline=[ |
|
dict(type='ToTensor'), |
|
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) |
|
]), |
|
parallel=dict( |
|
pipeline=dict(size=1), |
|
tensor=dict(size=1, mode=None), |
|
), |
|
seed=1024, |
|
)) |
|
|
|
|
|
def run_data_sampler(rank, world_size, port): |
|
dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend='gloo', port=port, host='localhost') |
|
colossalai.launch(**dist_args) |
|
print('finished initialization') |
|
|
|
transform_pipeline = [build_transform(cfg) for cfg in gpc.config.train_data.transform_pipeline] |
|
transform_pipeline = transforms.Compose(transform_pipeline) |
|
gpc.config.train_data.dataset['transform'] = transform_pipeline |
|
dataset = build_dataset(gpc.config.train_data.dataset) |
|
dataloader = get_dataloader(dataset, **gpc.config.train_data.dataloader) |
|
data_iter = iter(dataloader) |
|
img, label = data_iter.next() |
|
img = img[0] |
|
|
|
if gpc.get_local_rank(ParallelMode.DATA) != 0: |
|
img_to_compare = img.clone() |
|
else: |
|
img_to_compare = img |
|
dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA)) |
|
|
|
if gpc.get_local_rank(ParallelMode.DATA) != 0: |
|
assert not torch.equal( |
|
img, img_to_compare), 'Same image was distributed across ranks but expected it to be different' |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@pytest.mark.cpu |
|
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*") |
|
def test_data_sampler(): |
|
world_size = 4 |
|
test_func = partial(run_data_sampler, world_size=world_size, port=free_port()) |
|
mp.spawn(test_func, nprocs=world_size) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_data_sampler()
|
|
|