Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

78 lines
2.6 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os
from functools import partial
from pathlib import Path
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
import colossalai
from colossalai.builder import build_dataset, build_transform
from torchvision import transforms
from colossalai.context import ParallelMode, Config
from colossalai.core import global_context as gpc
from colossalai.utils import get_dataloader, free_port
from colossalai.testing import rerun_on_exception
CONFIG = Config(
dict(
train_data=dict(dataset=dict(
type='CIFAR10',
root=Path(os.environ['DATA']),
train=True,
download=True,
),
dataloader=dict(batch_size=8,),
transform_pipeline=[
dict(type='ToTensor'),
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]),
parallel=dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode=None),
),
seed=1024,
))
def run_data_sampler(rank, world_size, port):
dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend='gloo', port=port, host='localhost')
colossalai.launch(**dist_args)
print('finished initialization')
transform_pipeline = [build_transform(cfg) for cfg in gpc.config.train_data.transform_pipeline]
transform_pipeline = transforms.Compose(transform_pipeline)
gpc.config.train_data.dataset['transform'] = transform_pipeline
dataset = build_dataset(gpc.config.train_data.dataset)
dataloader = get_dataloader(dataset, **gpc.config.train_data.dataloader)
data_iter = iter(dataloader)
img, label = data_iter.next()
img = img[0]
if gpc.get_local_rank(ParallelMode.DATA) != 0:
img_to_compare = img.clone()
else:
img_to_compare = img
dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA))
if gpc.get_local_rank(ParallelMode.DATA) != 0:
assert not torch.equal(
img, img_to_compare), 'Same image was distributed across ranks but expected it to be different'
torch.cuda.empty_cache()
@pytest.mark.cpu
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_data_sampler():
world_size = 4
test_func = partial(run_data_sampler, world_size=world_size, port=free_port())
mp.spawn(test_func, nprocs=world_size)
if __name__ == '__main__':
test_data_sampler()