mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
114 lines
3.6 KiB
114 lines
3.6 KiB
import random
|
|
|
|
import pytest
|
|
import torch
|
|
from einops import rearrange
|
|
|
|
from colossalai.kernel.cuda_native.flash_attention import HAS_MEM_EFF_ATTN
|
|
from colossalai.testing import clear_cache_before_run, parameterize
|
|
|
|
if HAS_MEM_EFF_ATTN:
|
|
from colossalai.kernel.cuda_native.flash_attention import AttnMaskType, ColoAttention
|
|
|
|
|
|
def baseline_attention(Z, N_CTX, H, q, k, v, sm_scale):
|
|
M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda"))
|
|
p = torch.matmul(q, k.transpose(2, 3)) * sm_scale
|
|
for z in range(Z):
|
|
for h in range(H):
|
|
p[:, :, M == 0] = float("-inf")
|
|
p = torch.softmax(p.float(), dim=-1).half()
|
|
ref_out = torch.matmul(p, v)
|
|
return ref_out
|
|
|
|
|
|
@pytest.mark.skipif(HAS_MEM_EFF_ATTN == False, reason="xformers is not available")
|
|
@clear_cache_before_run()
|
|
@parameterize('B, S, H, D_HEAD', [(6, 8, 4, 16)])
|
|
def test_attention_gpt(B, S, H, D_HEAD, dtype=torch.float16):
|
|
D = H * D_HEAD
|
|
|
|
c_attn = torch.nn.Linear(D, 3 * D, dtype=dtype, device="cuda")
|
|
attn = ColoAttention(D, H, dropout=0.1)
|
|
|
|
x = torch.randn((B, S, D), dtype=dtype, device="cuda")
|
|
|
|
qkv = c_attn(x)
|
|
q, k, v = rearrange(qkv, 'b s (n h d) -> n b s h d', n=3, h=H)
|
|
y = attn(q, k, v, attn_mask_type=AttnMaskType.causal)
|
|
|
|
assert list(y.shape) == [B, S, D]
|
|
|
|
dy = torch.rand_like(y)
|
|
y.backward(dy)
|
|
|
|
|
|
@pytest.mark.skipif(HAS_MEM_EFF_ATTN == False, reason="xformers is not available")
|
|
@clear_cache_before_run()
|
|
@parameterize('B, S, H, D_HEAD', [(6, 8, 4, 16)])
|
|
def test_attention_bert(B, S, H, D_HEAD, dtype=torch.float16):
|
|
D = H * D_HEAD
|
|
|
|
c_attn = torch.nn.Linear(D, 3 * D, dtype=dtype, device="cuda")
|
|
attn = ColoAttention(D, H, dropout=0.1)
|
|
|
|
x = torch.randn((B, S, D), dtype=dtype, device="cuda")
|
|
# attention mask of shape [B, S] with zero padding to max length S
|
|
mask = [torch.ones(S - i, dtype=dtype, device="cuda") for i in range(B)]
|
|
mask = torch.nn.utils.rnn.pad_sequence(mask, batch_first=True)
|
|
|
|
qkv = c_attn(x)
|
|
q, k, v = rearrange(qkv, 'b s (n h d) -> b s n h d', n=3, h=H).unbind(dim=2)
|
|
y = attn(q, k, v, attn_mask=mask, attn_mask_type=AttnMaskType.padding)
|
|
|
|
assert list(y.shape) == [B, S, D]
|
|
|
|
dy = torch.rand_like(y)
|
|
y.backward(dy)
|
|
|
|
|
|
@pytest.mark.skipif(HAS_MEM_EFF_ATTN == False, reason="xformers is not available")
|
|
@clear_cache_before_run()
|
|
@parameterize('B, S, H, D_HEAD', [(6, 8, 4, 16)])
|
|
def test_attention_no_mask(B, S, H, D_HEAD, dtype=torch.float16):
|
|
D = H * D_HEAD
|
|
|
|
c_attn = torch.nn.Linear(D, 3 * D, dtype=dtype, device="cuda")
|
|
attn = ColoAttention(D, H, dropout=0.1)
|
|
|
|
x = torch.randn((B, S, D), dtype=dtype, device="cuda")
|
|
qkv = c_attn(x)
|
|
q, k, v = rearrange(qkv, 'b s (n h d) -> b s n h d', n=3, h=H).unbind(dim=2)
|
|
y = attn(q, k, v)
|
|
|
|
assert list(y.shape) == [B, S, D]
|
|
|
|
dy = torch.rand_like(y)
|
|
y.backward(dy)
|
|
|
|
|
|
@pytest.mark.skipif(HAS_MEM_EFF_ATTN == False, reason="xformers is not available")
|
|
@clear_cache_before_run()
|
|
@parameterize('B, S, T, H, D_HEAD', [(6, 24, 8, 4, 16)])
|
|
def test_cross_attention(B, S, T, H, D_HEAD, dtype=torch.float16):
|
|
D = H * D_HEAD
|
|
|
|
q_attn = torch.nn.Linear(D, D, dtype=dtype, device="cuda")
|
|
kv_attn = torch.nn.Linear(D, 2 * D, dtype=dtype, device="cuda")
|
|
|
|
attn = ColoAttention(D, H, dropout=0.1)
|
|
|
|
src = torch.randn((B, S, D), dtype=dtype, device="cuda")
|
|
tgt = torch.randn((B, T, D), dtype=dtype, device="cuda")
|
|
|
|
q = q_attn(tgt)
|
|
kv = kv_attn(src)
|
|
q = rearrange(q, 'b s (h d) -> b s h d', h=H)
|
|
k, v = rearrange(kv, 'b s (n h d) -> b s n h d', n=2, h=H).unbind(dim=2)
|
|
y = attn(q, k, v, attn_mask_type=AttnMaskType.causal)
|
|
|
|
assert list(y.shape) == [B, T, D]
|
|
|
|
dy = torch.rand_like(y)
|
|
y.backward(dy)
|