You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_zero/test_low_level/test_zero_init.py

57 lines
1.7 KiB

import pytest
import torch
import torch.distributed as dist
import torch.nn as nn
import colossalai
from colossalai.tensor import ProcessGroup
from colossalai.testing import spawn
from colossalai.utils import get_current_device
from colossalai.zero import ColoInitContext, LowLevelZeroOptimizer
class MlpModel(nn.Module):
def __init__(self):
super(MlpModel, self).__init__()
self.linear1 = nn.Linear(128, 256)
self.linear2 = nn.Linear(256, 512)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x
def exam_zero_init():
dp_2_tp_2_pg = ProcessGroup(dp_degree=2, tp_degree=2)
model1 = MlpModel().cuda()
with ColoInitContext(device=get_current_device(), default_pg=dp_2_tp_2_pg):
model2 = MlpModel()
optimizer1 = LowLevelZeroOptimizer(torch.optim.Adam(model1.parameters(), lr=1))
optimizer2 = LowLevelZeroOptimizer(torch.optim.Adam(model2.parameters(), lr=1))
assert optimizer1._local_rank == optimizer2._local_rank
assert optimizer1._world_size == optimizer2._world_size
assert optimizer1._dp_global_ranks == optimizer2._dp_global_ranks
mp_group1 = optimizer1._mp_torch_group
mp_group2 = optimizer2._mp_torch_group
assert dist.get_world_size(mp_group1) == dist.get_world_size(mp_group2)
assert dist.get_rank(mp_group1) == dist.get_rank(mp_group2)
def run_dist(rank, world_size, port):
config_dict = dict(parallel=dict(data=2, tensor=dict(size=2, mode='1d')))
colossalai.launch(config=config_dict, rank=rank, world_size=world_size, port=port, host='localhost')
exam_zero_init()
@pytest.mark.dist
def test_zero_init():
spawn(run_dist, 4)
if __name__ == '__main__':
test_zero_init()